Return to search

Μελέτη ροϊκών φαινομένων για μεγιστοποίηση θερμανταλλαγής σε ολοκληρωμένο ηλιακό σύστημα συλλέκτη-αποθήκης / Flow field study for maximization of heat transfer in Integrated Collector Storage Solar System.

Τα ολοκληρωμένα ηλιακά συστήματα συλλέκτη αποθήκης αποτελούνται από μία δεξαμενή αποθήκευσης, της οποίας τμήμα της επιφάνειας της χρησιμοποιείται σαν ηλιακός συλλέκτης. Συνήθως το ρευστό της αποθήκης είναι το νερό χρήσης. Στο υπό εξέταση σύστημα το νερό χρήσης θερμαίνεται έμμεσα, διερχόμενο μέσα από σωληνώσεις εναλλάκτη θερμότητας που τοποθετείται στο εσωτερικό της παραλληλεπίπεδης δεξαμενής. Για την εντατικοποίηση της μετάδοσης θερμότητας προς το νερό χρήσης, δημιουργείται ανάδευση του ρευστού του δοχείου μέσω κυκλοφορητή, ο οποίος τίθεται σε λειτουργία μόνο όταν υπάρχει ζήτηση ζεστού νερού. Προς αποφυγή παραμορφώσεων τοποθετούνται πτερύγια συγκράτησης που ενώνουν τις δύο μεγάλες επιφάνειες της δεξαμενής.
Στην παρούσα διδακτορική διατριβή διερευνήθηκαν τα ροϊκά φαινόμενα στο εσωτερικό του ICS που έχει περιγραφεί προηγουμένως, με στόχο τη μεγιστοποίηση της θερμανταλλαγής μεταξύ των δύο κυκλωμάτων νερού.
Για την παρατήρηση του ροϊκού πεδίου καθώς και την λήψη μετρήσεων ταχυτήτων κατασκευάστηκε πειραματική συσκευή με διαφανή τοιχώματα από Plexiglas. Ελήφθησαν μετρήσεις ταχυτήτων και διακυμάνσεων με χρήση συστήματος Laser Doppler διπλής ακτίνας. Για την οπτικοποίηση του ροϊκού πεδίου τοποθετήθηκαν σωματίδια πολυστερίνης στο εσωτερικό της συσκευής. Ελήφθησαν ψηφιακές φωτογραφίες και βιντεοσκοπήσεις του ροϊκού πεδίου.
Για την υπολογιστική προσομοίωση χρησιμοποιήθηκε το εμπορικό λογισμικό FLUENT. Αναπτύχθηκε υπολογιστικό μοντέλο και επιλύθηκε με όλα τα διαθέσιμα μοντέλα τύρβης. Στη συνέχεια πραγματοποιήθηκε σειρά υπολογιστικών προσομοιώσεων, στις οποίες διερευνήθηκε η βέλτιστη θέση και το μέγεθος των στομίων ανακυκλοφορίας, η βέλτιστη διάταξη των πτερυγίων συγκράτησης και η βέλτιστη θέση του εναλλάκτη. Επιπλέον προσδιορίστηκε υπολογιστικά και πειραματικά ο χρόνος αποκατάστασης του ροϊκού πεδίου. Τέλος, τα αποτελέσματα συγκρίθηκαν και με πειραματικά αποτελέσματα άλλων εργασιών.
Τα συμπεράσματα που εξάγονται έχουν ως ακολούθως:
Το μοντέλο τύρβης standard k-ω δίνει τα πιο αξιόπιστα αποτελέσματα.
Το υπολογιστικό μοντέλο θεωρείται πιστοποιημένο μετά από πειραματική επιβεβαίωση ταχυτήτων και θερμοκρασιών.
Το στόμιο ανακυκλοφορίας δεν πρέπει να τοποθετείται κάθετα στις μεγάλες επιφάνειες της δεξαμενής, ενώ η διάμετρος του πρέπει να είναι 1/2" ή και μικρότερη.
Ο χρόνος αποκατάστασης του ροϊκού πεδίου είναι περίπου 35 s.
Τα πτερύγια συγκράτησης πρέπει να ακολουθούν τις ροικές γραμμές.
Ως βέλτιστη θέση του εναλλάκτη θεωρείται όταν τοποθετείται σε επαφή με το τοίχωμα. / Integrated Collector Storage (ICS) solar systems use part of the hot water storage as collector, i.e. half of the storage surface is used as absorber. Usually, the storage medium serves also as the energy transfer medium (service hot water). In the examined ICS, the service water is heated indirectly, passing through a serpentine heat exchanger placed inside the tank. The heat transfer from the stored water to the service water is intensified by the agitation of the stored water. A simple solution is the recirculation of the stored water by a small pump, which is functioning whenever a request for hot water exists. Fins in suitable positions, connect the front and back surface of the ICS, to withstand the deformation due to pressures by the tank water.
In the present PhD thesis, the flow phenomena inside the ICS previous mentioned, are investigated. The aim is the maximization of the heat transfer between the two water circuits.
An experimental device was constructed by transparent Plexiglas, for flow visualization and velocity measurements. A dual beam Laser Doppler Velocimetry (LDV) system was used to measure velocities. Polystyrene particles were added in the comprised water, for the visualization of the path lines. Photographs and video films were also taken. The commercial code FLUENT is used for the Computational Fluid Dynamics (CFD) simulations. A CFD model is developed and solutions are obtained using all the available turbulence models. Three main factors that influence the performance are optimized: the position and size of the recirculation ports, the arrangement and size of the interconnecting fins and the heat exchanger placement. The settling time, i.e., the time required for the flow field to be fully developed, is computed both numerically and experimentally.
The previous analysis leads to the following conclusions:
The standard k–ω model is selected as the most appropriate.
The model is validated, with good agreement, against experimental measurements of velocities and temperatures.
The placement of the inlet recirculation port perpendicular to the main surfaces of the ICS should be avoided, while its diameter should be 1/2" or less.
The settling time is computed about 35s.
The interconnecting fins, of the two main ICS surfaces should follow the flow filed path lines.
The optimal placement of the tube heat exchanger is in contact with the two major surfaces of the storage tank.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/746
Date31 March 2008
CreatorsΓκέρτζος, Κωνσταντίνος
ContributorsΚαούρης, Ιωάννης, Gkertzos, Konstantinos, Κούτμος, Παναγιώτης, Πανίδης, Θρασύβουλος, Καλλιντέρης, Ιωάννης, Κυριάκης, Νικόλαος, Κίττας, Κωνσταντίνος, Τσιλιγκιρίδης, Γεώργιος, Καούρης, Ιωάννης
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0026 seconds