Chalcogenide glasses are well known to have good transparency into the infrared spectrum. These glasses though tend to have low thresholds as compared to oxide glasses for photo-induced changes and thermally-induced changes. Material modification such as photo-induced darkening, bleaching, refractive index change, densification or expansion, ablation of crystallization have been demonstrated, and are typically induced by a thermal furnace-based heat treatment, an optical source such as a laser, or a combination of photo-thermal interactions. Solely employing laser-based heating has an advantage over a furnace, since one has the potential to be able to spatially modify the materials properties with much greater precision by moving either the beam or the sample. The main properties of ChG glasses investigated in this study were the light-induced and thermally-induced modification of the glass through visible microscopy, white light interferometry, and Raman spectroscopy. Additionally computational models were developed in order to aid in determining what temperature rise should be occurring under the conditions used in experiments. It was seen that ablation, photo-expansion, crystallization, and melting could occur for some of the irradiation conditions that were used. The above bandgap energy simulations appeared to overestimate the maximum temperature that should have been reached in the sample, while the below bandgap energy simulations appeared to underestimate the maximum temperature that should have been reached in the sample. Ultimately, this work produces the ground work to be able to predict and control dose, and therefore heating, to induce localized crystallization and phase change.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5506 |
Date | 01 January 2014 |
Creators | Sisken, Laura |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0021 seconds