Return to search

Completing partial Latin squares with one filled row, column and symbol

Let P be an n×n partial Latin square every non-empty cell of which lies in a fixed row r, a fixed column c or contains a fixed symbol s. Assume further that s is the symbol of cell (r,c) in P. We prove that P is completable to a Latin square if n≥8 and n is divisible by 4, or n≤7 and n∉{3,4,5}. Moreover, we present a polynomial algorithm for the completion of such a partial Latin square.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-92689
Date January 2013
CreatorsCasselgren, Carl Johan, Häggkvist, Roland
PublisherLinköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska högskolan, Department of Mathematics, Umeå University, Sweden, Elsevier
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeArticle in journal, info:eu-repo/semantics/article, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDiscrete Mathematics, 0012-365X, 2013, 313:9, s. 1011-1017

Page generated in 0.0019 seconds