In the past two decades polymer/clay nanocomposites (PCNs) have emerged as promising materials that exhibit remarkably improved properties when compared to conventional composites and pristine polymers. Such improvements strongly depend on the dispersion of clay nanoparticles in the polymer matrix. In spite of great efforts expended in characterizing clay dispersion, effective, simple and quantitative techniques are still needed. This work addresses this challenge by presenting new aspects of 1H solid-state NMR for quantifying clay dispersion in PCNs filled with clay containing paramagnetic ions. Employing these 1H solid-state NMR methods, some structure-processing-deformation relationships of PCNs were derived, and basic insights into nuclear relaxation and spin diffusion in PCNs were gained as well.
Detailed models and analyses were described for 1H spin-lattice relaxation in the presence of paramagnetic clays in PCNs. Relaxation recovery was analytically correlated to clay dispersion in two ways: one is the initial relaxation recovery which is related to clay surface area, and the other is the spin-lattice relaxation time which is related to interparticle spacing. These two NMR observables were employed to quantitatively observe the evolution of clay morphology in poly(propylene)/clay (PP/MMT) nanocomposites upon equibiaxial stretching, as well as upon in situ uniaxial deformation. The initial relaxation recovery was independently utilized to determine the polymer-clay interfacial surface area and the degree of clay exfoliation. We demonstrated the capabilities of our models in quantitatively characterizing several materials, including poly(vinyl alcohol), nylon 6, poly(å-caprolactone) (PCL), poly(lactic acid) (PLA) and PP nanocomposites. These results were used to examine the dependence of clay morphology upon processing (strain ratio, strain rate, temperature), deformation (extension), component characteristics (polymer molecular weight, clay surface modification) and clay content. Effects of paramagnetic Fe3+ concentration and external magnetic field strength on 1H spin-lattice relaxation in PCNs were also investigated and discussed. In particular, low field separates the initial relaxation recovery into two stages: one related to clay content and the other related to the polymer-clay interfacial surface area. The low field was observed to enhance the paramagnetic contribution to the spin-lattice relaxation rate, increasing its sensitivity to clay morphology. In addition, measurements of long-distance spin diffusion coefficients for a variety of polymers and paramagnetic characteristics of organically modified clay were explored. Overall, the utility of NMR relaxometry in characterizing PCNs has been significantly expanded and successfully demonstrated in this dissertation.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/42936 |
Date | 17 November 2010 |
Creators | Xu, Bo |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds