Doctor of Philosophy (PhD). / The term `Lax pair' refers to linear systems (of various types) that are related to nonlinear equations through a compatibility condition. If a nonlinear equation possesses a Lax pair, then the Lax pair may be used to gather information about the behaviour of the solutions to the nonlinear equation. Conserved quantities, asymptotics and even explicit solutions to the nonlinear equation, amongst other information, can be calculated using a Lax pair. Importantly, the existence of a Lax pair is a signature of integrability of the associated nonlinear equation. While Lax pairs were originally devised in the context of continuous equations, Lax pairs for discrete integrable systems have risen to prominence over the last three decades or so and this thesis focuses entirely on discrete equations. Famous continuous systems such as the Korteweg de Vries equation and the Painleve equations all have integrable discrete analogues, which retrieve the original systems in the continuous limit. Links between the different types of integrable systems are well known, such as reductions from partial difference equations to ordinary difference equations. Infinite hierarchies of integrable equations can be constructed where each equation is related to adjacent members of the hierarchy and the order of the equations can be increased arbitrarily. After a literature review, the original material in this thesis is instigated by a completeness study that finds all possible Lax pairs of a certain type, including one for the lattice modified Korteweg de Vries equation. The lattice modified Korteweg de Vries equation is subsequently reduced to several q-discrete Painleve equations, and the reductions are used to form Lax pairs for those equations. The series of reductions suggests the presence of a hierarchy of equations, where each equation is obtained by applying a recursion relation to an earlier member of the hierarchy, this is confirmed using expansions within the Lax pairs for the q-Painleve equations. Lastly, some explorations are included into fake Lax pairs, as well as sets of equivalent nonlinear equations with similar Lax pairs.
Identifer | oai:union.ndltd.org:ADTP/202444 |
Date | January 2008 |
Creators | Hay, Mike |
Publisher | Science, School of Mathematics and Statistics. |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | The author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0017 seconds