This thesis describes a laboratory investigation of in-situ treatment of synthetic leachate representative of that generated by a municipal solid waste (MSW) landfill. The overall objective is to evaluate alternative designs and operating procedures for effective leachate collection in conjunction with efforts to accelerate waste stabilization (i.e. leachate recirculation). In the investigation five 15 cm (6) diameter PVC columns were packed with pea gravel and concrete of different sizes; geotextiles were also placed between the packed sections as filter-separators and promoters of bacterial growth. Synthetic leachate was continuously input to the top of the columns and circulated at rates representative of operating field conditions. For each column, effluent was discharged to a nitrification reactor before recirculation. The tests were conducted under anaerobic and unsaturated conditions in the columns. Results indicate about a 97% decrease in COD from the synthetic leachate concentration entering the top of the column, and about 98 % conversion of the ammonia to nitrogen gas. COD depletion and methane production were not significantly inhibited by the denitrification process. Optimum Hydraulic Retention Time (HRT) for the nitrification-denitrification system makes it economically viable for its development at a landfill site. Gas production shows low CO2 values, decreasing the potential of clogging in the Leachate Collection System (LCS) and
extending the Landfill Gas (LFG) networks life service by generating a less corrosive environment. The use of concrete as an alternative to the most commonly used natural gravel as leachate collection drains may not be a good option. During the experiment, the leachate that permeated the columns packed with crushed concrete, presented a higher pH than the leachate that permeated the natural stone. At the conclusion of the experiment noticeable weathering was observed when the columns where dismantled. Further studies are recommended until more conclusive evidence as to concrete performance is found. The overall results obtained from the experiment show that in situ passive treatment at landfills is viable.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-04162005-224231 |
Date | 27 April 2005 |
Creators | Ruiz Castro, Ernesto Fidel |
Contributors | VanGulck, Jamie, Sparks, Gordon A., Putz, Gordon, Haug, Moir D., Fleming, Ian R., Barbour, S. Lee |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-04162005-224231/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds