Return to search

The Impact Fracture of Solder Joints by Numerical Simulation Methods

With electronic packaging towards the development of lead free process, the research on the portable electronic devices subject to impact load is emphasized gradually. At present, for drop test and cyclic bending test, most of the failure modes lie on the modes of "fracturing in IMC layer" or "fracturing on IMC/solder boundary". The purpose of this work is to use 3D numerical analysis software ANSYS/LS_DYNA, that were found out a proper numerical model, to further analyze the impact fracture of lead-free solder.
From the numerical results, the strain rate of solder joint ranges from 103 s-1 to 104 s-1 under an impact velocity of 2 m/s. At this strain rate, the mechanical properties of solder joint could be effectively investigated. When IMC strength is smaller than 300MPa, the main failure mode is fracturing of IMC; whilst, IMC strength is greater than 300MPa, the failure mode becomes fracturing of bulk solder, but the failure mode of fracturing of IMC and a partial solder requires a model with more fine meshes to simulate. Different velocities did not affect the numerical results significantly, because the material parameters of a solder ball is strongly dependent on strain rate. Also, we found that the impact test in reality does not present a shear-dominant mode alone even when the impact angle is 0¢X. While using simulation to carry out the dynamic experiment, it can be observed that the course of solder joint suffering the damage provides a good reference and contrast for the experimental work in the future.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0826105-144803
Date26 August 2005
CreatorsLi, Bo-Yu
ContributorsYi-Shao Lai, Ming Chen, Chorng-Fuh Liu, Ming-Hwa R. Jen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0826105-144803
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0023 seconds