Return to search

Characterization and simulation of the mechanical forces that control the process of Dorsal Closure during Drosophila melanogaster embryogenesis / Caractérisation et Simulation des forces mécaniques contrôlant le processus de Fermeture Dorsale durant l'embryogénèse de la drosophile

Le travail de thèse présenté ici vise à caractériser et simuler les forces mécaniques impliquées dans le processus de fermeture dorsale chez l’organisme Drosophila melanogaster. Ce processus participe à l’acquisition par l’embryon de sa forme finale. Ainsi, l’objectif du travail présenté ici est d’approfondir nos connaissances sur la mécanique des tissus,ainsi que sur leur rôle dans l’embryogenèse.La fermeture dorsale est un processus similaire à la cicatrisation, dans lequel la fermeture du trou dorsal est réalisée par l'amnioséreuse, qui couvre le trou dorsal, et la rangée la plus dorsale des cellules de l'épiderme: les leading edge cells.Une partie du travail présenté ici étudie aussi les mouvements des cellules du leading edge,dans le but de comprendre l’effet du câble d’actine sur la dynamique de la fermeture dorsale.Un algorithme permettant de détecter les contours des cellules, leur position ainsi que celle de leurs jonctions multiples a été développé, ainsi qu'un interface utilisateur.Différents modèles dynamiques ont ensuite été construits, prenant en compte différents comportements mécaniques, selon l’approche lagrangienne. Les systèmes d’équations ont été résolus numériquement, et leurs prédictions comparées aux données biologiques selon l’approche des moindres carrés. Les résultats ont été validés par le test de la fonction d’auto corrélation.Les résultats présentés dans cette thèse nous permettent de mieux comprendre les processus mécaniques impliqués dans les oscillations des cellules de l’amnioséreuse. Ils nous donnent aussi des indices sur leurs caractéristiques biologiques. Ils nous permettent enfin de mieux appréhender le rôle du cabled’actine dans ce processus. / The work presented here aims at characterizing and simulating the mechanical forces involved in the process of Dorsal Closure in the organism Drosophila melanogaster, an embryonic process. In particular, Dorsal Closure participates in the acquisition of the final form of the embryo. Therefore, the work presented here aims at fathoming our knowledge on tissues mechanics, as well as their role in the acquisition of shape. The tissues involved in Dorsal Closure are the epidermis and the amnioserosa. At this stage of development, the epidermis surrounds almost all the embryo. Nevertheless, the amnioserosa still covers a large area of the dorsal side called dorsal hole. Hence, Dorsal Closure aims at shutting this hole and joining the lateral sides of the epidermis, in a process similar to wound healing. In order to fuse the two sides of the epidermis on the dorsal line, the epidermis must be drawn dorsalward. This movement is driven by the amnioserosa on the one hand, and by the dorsalmost row of the epidermis (called Leading Edge cells) on the other hand. The latter first form a transcellular Actin Cable around the dorsal hole. The cable, contracting, will reduce the area of the dorsal hole, covered by the amnioserosa. Second, the Leading Edge cells emit protrusions that will attach to the opposite Leading Edge and drag it toward themselves, untill the two sides of the epidermis fuse. These protrusions have a limited range, hence the dragging and fusion only take place at the ends of the dorsal hole (called canthi), where the distance between the two Leading Edges is small enough. The Amnioserosa also drags the epidermis toward the dorsal line. Its cells produce a contractile network. Interstingly, Amnioserosa cells see the area of their top side (apical side) vary in a periodic way. Although these variations have been widely studied, their role in Dorsal Closure remains unknown. This PhD aims at improving our knowledge of the mechanical concepts involved in these oscillations, and to build a physical model representing these movements. The work presented here also studies the movements of the Leading Edge cells, in order to understand the effect of the Actin Cableon the dynamics of Dorsal Closure. In order to study the cells movements and the role of the tissues involved in Dorsal Closure, an algorithm was developped, allowing to detect the cells edges, their position, as well as those of their vertices (multiple junction between three or four cells) and to track them over time. A user interface was also developped, in order to facilitate the adjustment of the parameters allowing the detection, as well as the correction of possible errors. Various dynamical models were then built following the lagrangian approach. The systems of equations deriving from the Euler-Lagrange equations were numerically solved, and their predictions compared to the biological data extracted thanks to the algorithm presented earlier, following the least square approach. The model validation was performed thanks to the autocorrelation function test. Finally, the Leading Edge dynamics was studied characterising the cellular movements at the interface between the epidermis and the amnioserosa. Wild type embryos dynamics were compared to those of mutated embryos showing specific defects in the Actin Cable formation. The results presented in this manuscript allow a better understanding of the processes involved in in Amnioserosa cells oscicllations. They also give clues on their biological characteristics. Finally, they assess the role of the actin cable in this process similar to wound healing.

Identiferoai:union.ndltd.org:theses.fr/2015ENSL0999
Date29 June 2015
CreatorsDureau, Maxime
ContributorsLyon, École normale supérieure, Università degli studi (Gênes, Italie), Vincent, Stéphane, Bagnerini, Patrizia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds