Return to search

The impact of embedding multiple modes of representation on student construction of chemistry knowledge

This study was designed to examine the impact of embedding multiple modes of representing science information on student conceptual understanding in science. Multiple representations refer to utilizing charts, graphs, diagrams, and other types of representations to communicate scientific information. This study investigated the impact of encouraging students to embed or integrate the multiple modes with text in end of unit writing-to-learn activities. A quasi-experimental design in which four separate sites consisting of intact chemistry classes taught by a separate teacher at each site was utilized. At each site, approximately half of the classes were designated treatment classes and students in these classes participated in activities designed to encourage strategies to embed multiple modes with text in student writing. The control classes did not participate in these activities. All classes participated in identical end of unit writing tasks in which they were required to use at least one mode other than text, followed by identical end of unit assessments. This progression was then repeated for a second consecutive unit of study. Analysis of quantitative data indicated that in several cases, treatment classes significantly outperformed control classes both on measures of embeddedness in writing and on end of unit assessment measures. In addition, analysis at the level of individual students indicated significant positive correlations in many cases between measures of student embeddedness in writing and student performance on end of unit assessments. Three factors emerged as critical in increasing the chances for benefit for students from these types of activities. First, teacher the level of implementation and emphasis on the embeddedness lessons was linked to the possibility of conceptual benefit. Secondly, students participating in two consecutive lessons appeared to receive greater benefit, inferring a cumulative benefit. Finally, differential impact of the degree of embeddedness on student performance was noted based on student's level of science ability prior to the initiation of study procedures.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-1438
Date01 May 2009
CreatorsMcDermott, Mark Andrew
ContributorsHand, Brian
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2009 Mark Andrew McDermott

Page generated in 0.0062 seconds