Return to search

Sistema de recomendação de objeto de aprendizagem baseado em postagens extraídas do ambiente virtual de aprendizagem

Os fóruns de discussões apresentam-se com umas das ferramentas de interação utilizadas nos ambientes virtuais de aprendizagem (AVAs). Esta pesquisa tem como objetivo propor um sistema computacional para recomendação de Objeto de Aprendizagem (OA), levando em consideração as postagens feitas de dentro dos fóruns de um Ambiente Virtual de Aprendizagem (AVA). A metodologia utilizada foi a pesquisa qualitativa, dos tipos descritiva e explicativa. Esse sistema identifica as palavras-chave nos fóruns de um AVA; usam as palavras-chave como indícios dos interesses dos usuários; classifica (atributos pesos) as palavras mais relevantes (Hot Topics); submete a um mecanismo de busca (repositório), neste trabalho foram usados os motores de busca, para fins de teste e oferece os resultados da busca aos usuários. As contribuições deste sistema para os sujeitos participantes desta pesquisa são: recomendação automática de OA para os alunos e professores; aplicação de mineração de dados para sistema gestão educacional; técnica de mineração de textos, utilizando algoritmo TF*PDF (Term Frequency * Proportional Document Frequency) e integração do AVA com repositório digital. Para validar o sistema de recomendação de OA em um AVA foi desenvolvido protótipo do sistema com uma amostra, contendo vinte e cinco alunos e cinco professores de duas turmas das disciplinas de Modelagem de Banco de Dados e Interface de Usuários e Sistemas Computacionais do curso de Engenharia de Computação da Universidade Estadual do Maranhão. O estudo realizado sobre o tema, e relatado nessa tese, tem como foco a recomendação de OA nos fóruns de um AVA. A avaliação e validação realizadas, através de protótipo do sistema com professores e alunos evidenciaram que o sistema de recomendação de Web Services (RECOAWS) proposto atende às expectativas e pode apoiar professores e alunos, nas suas atividades pedagógicas, dentro dos fóruns. / Discussion forums get present with one of interaction tools used in virtual learning environments (VLEs). This research aims to propose a computational system for Learning Object recommendation (LO), taking into account the posts made from within the forums of a Virtual Learning Environment (VLE). The methodology used was a qualitative study of descriptive and explanatory types. This system identifies the keywords in the forums of a VLE; It uses the keywords as evidence of the interests of users; ranks (attributes weights) the most relevant words (Hot Topics); It submits to a search engine (repository), this work were used search engines for testing purposes and provides the search results to users. The contributions of this system to the participants in this study are: automatic recommendation of LO for students and teachers; data mining application to educational management system; text mining techniques, using TF * PDF algorithm (Term Frequency * Proportional Document Frequency) and integration of the VLE with digital repository. To validate the LO recommendation system in a VLE was developed prototype system with a sample, with twenty-five students and five teachers from two classes of database modeling disciplines and User Interface and Computational Systems of Engineering course Computing of the State University of Maranhão. The study on the subject, and reported in this thesis is focused on LO recommendation in the forums of a VLE. The evaluation and validation performed by the prototype system with teachers and students showed that the Web Services recommendation system (RecoaWS) proposed meets expectations and can support teachers and students in their educational activities within the forums.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/151260
Date January 2016
CreatorsSilva, Reinaldo de Jesus da
ContributorsVicari, Rosa Maria
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds