Early detection of pathogenic bacteria in food, drinking water and medicine products is one of the essential tasks of routine microbiological analysis. Through analytics, outbreaks can be discovered and consequently, countermeasures can be initiated to minimize health and economic damage. Cultivation of pathogens from contaminated specimens is routinely performed in microbiological laboratories worldwide. The procedure is easy to perform, requires little equipment and provides simple quantitative data in colony-forming units (CFUs) per sample volume. Only the time between preparation and confirmation of a positive (contaminated) sample usually extends over several days. The desired goal should be a technique that can retain the simplicity of cultivation while providing real-time information about the sample under investigation for early detection of potential contamination. Therefore,
in the framework of this thesis, systematic heat flow measurements were performed on two model strains, Lactobacillus plantarum DSM 20205 and Pseudomonas putida mt-2 KT2440. The influence of cultivation techniques (in liquid, on solid and membrane filter placed onto solid medium) in static ampoule systems on calorimetric detection was investigated. In particular, the effect of contamination level (initial bacterial cell number), substrate amount (nutrients and oxygen), and detection limits were systematically evaluated. In addition, microcalorimetric measurements of Legionella pneumophila ATCC 33152, a waterborne pathogen, were conducted for the first time. Heat flow profiles demonstrated that high contamination levels (> 1000 CFU) were detected within 24 h. Compared to detection times of up to 10 days by ISO 11731:2017, calorimetric detection can serve as an early warning system.
With this knowledge, a uniquely manufactured micro(bio-)calorimetric test system was designed to meet the requirements for detecting bacterial contaminations. In particular, the sample vessel geometry and the operating temperature perfectly matched the microbiological analysis. Within this development work, numerical models were established to investigate the temperature distribution of
selected compounds as well as the complete calorimetric system. Based on these models, modifications to the test system were numerically simulated in advance to improve the instrument's performance stepwise. This thesis presents the methodological principles and a calorimetric test system designed as an early warning and detection tool for microbiological samples.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76836 |
Date | 30 November 2021 |
Creators | Fricke, Christian |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds