Return to search

Dual interferometer for dynamic measurement of corneal topography

The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622342
Date31 August 2016
CreatorsMicali, Jason D., Greivenkamp, John E.
ContributorsUniv Arizona, Coll Opt Sci
PublisherSPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016 Society of Photo-Optical Instrumentation Engineers
Relationhttp://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.21.8.085007

Page generated in 0.0025 seconds