The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622342 |
Date | 31 August 2016 |
Creators | Micali, Jason D., Greivenkamp, John E. |
Contributors | Univ Arizona, Coll Opt Sci |
Publisher | SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 Society of Photo-Optical Instrumentation Engineers |
Relation | http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JBO.21.8.085007 |
Page generated in 0.0025 seconds