<p dir="ltr">The Mu2e experiment is searching for Beyond-Standard-Model, Charged Lepton Flavor Violation (CLFV) in the muon capture reaction μ<sup>− </sup>+ Al → e<sup>−</sup> + Al. To compare the accessible energy scale of this experiment, the Large Hadron Collider (LHC) is capable of observing new physics at the few TeV mass scale. However, by searching for μ-to-e conversion at a branching ratio sensitivity of 10<sup>−17</sup>, Mu2e will probe for new physics at mass scales up to 10<sup>3</sup> ∼ 10<sup>4 </sup>TeV, far beyond the reach of any planned accelerator and surpassing the current world’s best limit by 10<sup>4</sup> times. In addition, there is no competing Standard Model process that produces this decay to a branching ratio level < 10<sup>−54</sup>. To report a reliable result, the number of stopped muons will be normalized to 10% precision utilizing two γ-ray transitions and one x-ray atomic transition. The first, directly proportional to the CLFV signal, is the 1808.7 keV γ-ray emitted promptly in the muon capture process. The second, the 2p→1s atomic transition of muonic aluminum, is the 346.8 keV x-ray line. The third, is the 844 keV γ-ray from the β-decay process. These signals need to be measured in the presence of an energy flux background of 3.2 x 10<sup>8 </sup>TeV/sec, consisting of muons, electrons, neutrons, x-rays and γ-rays. Here, two com- 11 photon counting detectors are used in the luminosity measurement. One of them, the LaBr<sub>3</sub> detector, is capable of high rate operation up to and above 800 kcps and energy resolution of 0.7%, producing highly accurate statistical measurements. The other, the HPGe detector is capable of energy resolution of 0.1%, with limited rate capability ∼ 70 kcps, yet producing measurements having low systematic error. Once signals are found within the background, corrections must be understood and applied including: geometric factors, detector efficiency, branching ratio of the observed physics pro- cesses, signal loss due to propagation to the detector, interfering lines, event loss due to pile-up, event loss due to algorithm miscalculation, time evolution of the signal, and others. The normalization measurement will be reported out in real time every 5 to 10 minutes, and a comprehensive off-line analysis will be undertaken using merged data sets.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25631847 |
Date | 18 April 2024 |
Creators | Jijun Chen (18398139) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/_b_NORMALIZATION_OF_THE_MU2E_CHARGED_LEPTON_FLAVOR_VIOLATION_EXPERIMENT_b_/25631847 |
Page generated in 0.0022 seconds