Return to search

Supplementing Bovine Embryo Culture Media to Improve the Production and Quality of In Vitro Produced Bovine Embryos

Initial studies in this work explored the role of interleukin-6 (IL6) and leukemia inhibitory factor (LIF) in preimplantation bovine embryos. Neither cytokine affected the total percentage of embryos which developed to the blastocyst stage in vitro. However, supplementation of IL6 increased blastocyst inner cell mass (ICM) cell number without affecting trophectoderm (TE) cell number. Additionally, we found that IL6 activated signal transducer and activator of transcription 3 (STAT3) specifically within ICM cells. LIF, however, did not affect ICM cell number or activate STAT3 in ICM cells, and was not pursued further. This increase in ICM cell number by IL6 was largely comprised of hypoblast (GATA6+:NANOG-) cells, and most IL6-responsive cells in day 9 blastocysts were hypoblast cells (as measured by STAT3 activation). However, some epiblast (NANOG+) cells were also IL6-responsive, and IL6 appeared to initially slow epiblast differentiation. Finally, IL6-treated blastocysts also had increased transcripts of hypoblast/primitive endoderm (PE) markers. These results indicate that IL6 may improve pregnancy retention of IVP embryos by improving yolk sac development, but further work is needed to confirm this theory.

Activation of STAT3 by IL6 could be blocked with a chemical Janus kinase 2 (JAK2) inhibitor (AZD1480). JAK2 inhibition from day 5 to 8 resulted in blastocyst ICMs with fewer than 10% the normal cell number, regardless of IL6 supplementation. This indicates that STAT3 is critical for bovine ICM development. Further analysis revealed that inhibition of JAK2/STAT did not prevent ICM formation but disrupted its maintenance.

Additionally, we assessed the suitability of zinc sulfate and a bovine embryonic stem cell culture media (TeSR) for improving bovine embryo development in vitro. Zinc sulfate increased day 8 blastocyst total and ICM cell number. Therefore, zinc sulfate appears to improve blastocyst quality. The TeSR medium improved embryo development beyond day 8. In normal synthetic oviduct fluid, blastocysts degenerated after day 8, while blastocysts moved to TeSR had greatly increased cell numbers, and even exhibited PE migration out from the ICM, a phenomenon that has not been reported in vitro. This indicates that extended blastocyst culture is possible with TeSR media. / Doctor of Philosophy / Bovine embryos have been produced in vitro for the purpose of being transferred to recipient cattle to produce a calf since the 1980s. This practice allows cattle breeders to increase the number of offspring from their best females each year, and also allows for more rapid progress in generational genetic improvement. However, only approximately 10% of bovine oocytes survive and produce a calf. This poor efficiency of bovine in vitro embryo production negatively impacts the procedure's widespread use. A significant portion of these embryo losses are likely a result of inadequate in vitro culture conditions, particularly of the embryo culture media, the fluid in which embryos are grown. This media is often called "synthetic oviduct fluid," or SOF, because it is designed to mimic the fluid present in the cow's oviduct, where the embryo would normally reside. However, SOF is much simpler in nature than actual cow oviduct fluid, and this leads to reduced embryonic survival of in vitro produced embryos.

Unfortunately, we know very little of what molecules control and promote bovine embryo development. Therefore, one major goal of bovine embryo research is to identify these factors and add them to SOF. The goal of this work was to examine the ability of three molecules, interleukin-6 (IL6), leukemia inhibitory factor (LIF), and zinc sulfate, to increase the number and quality of blastocysts produced through in vitro culture techniques. Additionally, I tested the replacement of SOF with a complex cell culture media, known as TeSR. This medium is more complex than SOF, and therefore should better promote embryo development.

This work revealed that IL6, but not LIF, improves in vitro produced (IVP) bovine blastocyst quality. Unfortunately, neither IL6 nor LIF affected the percentage of embryos which survived to the blastocyst stage. However, IL6, but not LIF, increased the number of cells in the inner cell mass (ICM) of the blastocysts. ICM cells are the portion of the embryo which will produce the future calf. IVP bovine embryos are known to have fewer cells than normal, in vivo derived, blastocysts, and this issue is believed to cause some embryonic death after embryo transfer. Therefore, treatment with IL6 may increase the percentage of embryos which will survive after transfer and produce a calf.

We also found the addition of zinc sulfate to SOF to benefit embryo quality. None of the concentrations of zinc significantly improved the percentage of embryos which survived to the blastocyst stage, but 2 µM zinc did increase ICM cell number. Like IL6, this may improve embryo survival after transfer.

The use of the TeSR media as a replacement for SOF had some benefits. Unfortunately, this media is unusable for producing embryos for transfer to recipients, as we discovered early embryos could not survive in the media. However, blastocyst-stage embryos thrived in it, and could be cultured in vitro for a longer period of time as a result. Therefore, this media will be a useful tool for studying bovine embryo development in vitro, however it is unlikely to benefit calf production.

In summary, this work provides evidence that zinc sulfate and IL6 are beneficial additions to SOF. However, future work is needed to determine if embryos produced with these factors are more able to produce a calf. Additionally, we discovered that TeSR is a superior extended blastocyst culture medium.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/105143
Date09 April 2020
CreatorsWooldridge, Lydia Katherine
ContributorsAnimal and Poultry Sciences, Ealy, Alan Dale, Lee, Kiho, Eyestone, Willard H., Johnson, Sally E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0106 seconds