Return to search

Analýza cytologických snímků / Analysis of cytology images

This master’s thesis is focused on automating the process of differential leukocyte count in peripherial blood using image processing. It deals with the design of the processing of digital images - from scanning and image preprocessing, segmentation nucleus and cytoplasm, feature selection and classifier, including testing on a set of images that were scanned in the context of this work. This work introduces used segmentation methods and classification procedures which separate nucleus and the cytoplasm of leukocytes. A statistical analysis is performed on the basis of these structures. Following adequate statistical parameters, a set of features has been chosen. This data then go through a classification process realized by three artificial neural networks. Overall were classified 5 types of leukocytes: neutropfiles, lymphocytes, monocytes, eosinophiles and basophiles. The sensitivity and specificity of the classification made for 4 out of 5 leukocyte types (neutropfiles, lymphocytes, monocytes, eosinophiles) is higher than 90 %. Sensitivity of classiffication basophiles was evaluated at 75 % and specificity at 67 %. The total ability of classification has been tested on 111 leukocytes and was approximately 91% successful. All algorithms were created in the MATLAB program.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:219507
Date January 2012
CreatorsPavlík, Jan
ContributorsBlaha, Milan, Kolář, Radim
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds