This thesis presents a new transformative manufacturing methodology for free-form machining. An experimental prototype machine is constructed to levitate and rotate an object attached with sharp edges, which act as a cutter for the purpose of performing machining processes. This device aims to lead to a technological breakthrough, overcoming the limitation of the workpiece features, and achieve greater free-form machining capability. The construction of curved holes and interior surfaces are constrained by the geometry of the machine tool. The proposed concept creates a new device that uses a magnetic field generator as a base. It is loaded with a constant power imposing a vertical physical force to balance gravity and stabilize the cutting tool. With the uniqueness of a preferred orientation between the tool and the base, a rotating surface placed below the base permits the rotation of the cutting tool in order to achieve desired tool rotation speed. A smooth and controlled cut is achieved on a soft material. The result shows the feasibility of the device to achieve similar outcomes as a machine tool.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52269 |
Date | 27 August 2014 |
Creators | Shih, Alexander H. |
Contributors | Liang, Steven Y. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0017 seconds