Approved for public release, distribution is unlimited / A Halo orbit about a libration point of a restricted three-body system provides additional opportunities for surveillance, communication, and exploratory missions in lieu of the classical spacecraft orbit. Historically libration point missions have focused on Halo orbits and trajectories about the Sun-Earth System. This thesis will focus on libration point orbit solutions in the Earth-Moon system using the restricted three body equations of motion with three low-thrust control functions. These classical dynamics are used to design and optimize orbital trajectories about stable and unstable libration points of the Earth-Moon system using DIDO, a dynamic optimization software. The solutions for the optimized performance are based on a quadratic cost function. Specific constraints and bounds were placed on the potential solution set in order to ensure correct target trajectories. This approach revealed locally optimal solutions for orbits about a stable and unstable libration point. / Lieutenant, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1649 |
Date | 03 1900 |
Creators | McCaine, Gina |
Contributors | Ross, I. Michael, Danielson, Don, Naval Postgraduate School (U.S.)., Department of Mechanical and Astronautical Engineering |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xiii, 41 p. : ill. (some col.), application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted. |
Page generated in 0.0131 seconds