Return to search

Graphical user interface for evaluation of knee proprioception and how it is affected by an anterior cruciate ligament (ACL) injury- a functional brain imaging study : Ett grafiskt användargränssnitt för utvärdering av knäproprioception och hur det påverkas av en korsbandsskada - en funktionell magnetresonanstomografisk studie

There is a big risk that neuroreceptors located in the knee, responsible for our proprioceptive ability, are damaged after an anterior cruciate ligament (ACL) injury occurs. This may cause miscommunication between the neuroreceptors and motoric function in the brain. Due to the brains plasticity, it has been shown that brain activity patterns, presented as blood oxygen dependent level-signal (BOLD-signal), achieved from functional magnetic resonance imaging (fMRI) differs between healthy and injured individuals when performing certain tasks involving knee movement. As there is little consensus on how a proprioceptive test should be performed, a unique test were participants uses blindfold during a knee bending exercise was created at U Motion Lab, Umeå University. A Matlab based general user interface (GUI) was created for evaluation of the proprioceptive test. This GUI is communicating with the third party toolbox SPM12 and performs necessary preprocessing fMRI-image steps for statistical analysis and statistical parametric mapping of the BOLD-signal for both a healthy control- and ACL-injured group. The fMRIimages preprocessed by the GUI were generated by a 3 T GE scanner and the motion data was collected using an eight-camera 3D-motion analysis system. Time events for three different tasks was investigated. These were passive resting, memorizing and proprioceptive events. For both the control (5 participants)- and ACL (2 participants) group the main area of brain activation during the proprioceptive tests occurred in the frontal lobe. For the control group, brain activation was found in the cerebellum anterior lobe which is a possible origin for unconscious proprioception. For the ACL group activation was found in the inferior parietal lobule which involves visuomotor integration. Activation was also found in the inferior frontal gyrus which according to previous studies, may indicate risk-taking/”out of character” decisions. The results of this study indicates that the proprioceptive test seems to be a promising tool for evaluation of proprioceptive ability. However, more subjects need to be included to validate the result of this study.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-144517
Date January 2018
CreatorsJohan, Wallgren
PublisherUmeå universitet, Institutionen för fysik, Umeå universitet, Institutionen för strålningsvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds