Return to search

Spectroscopic Investigations of the Photophysics of Cryptophyte Light-harvesting

The biological significance of photosynthesis is indisputable as it is necessary for nearly all life on earth. Photosynthesis provides chemical energy for plants, algae, and bacteria, while heterotrophic organisms rely on these species as their ultimate food source. The initial step in photosynthesis requires the absorption of sunlight to create electronic excitations. Light-harvesting proteins play the functional role of capturing solar radiation and transferring the resulting excitation to the reaction centers where it is used to carry out the chemical reactions of photosynthesis. Despite the wide variety of light-harvesting protein structures and arrangements, most light-harvesting proteins are able to utilize the captured solar energy for charge separation with near perfect quantum efficiency. This thesis will focus on understanding the energy transfer dynamics and photophysics of a specific subset of light-harvesting antennae known as phycobiliproteins. These proteins are extracted from cryptophyte algae and are investigated using steady-state and ultrafast spectroscopic techniques.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/33399
Date21 November 2012
CreatorsDinshaw, Rayomond
ContributorsScholes, Gregory D.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds