Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus Phanerochaete carnosa has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition.
To elucidate the genetic basis of softwood bioconversion by P. carnosa, its genome was sequenced and transcriptomes were evaluated after growth on wood compared to liquid medium. Results indicate that P. carnosa differs from P. chrysosporium in the number and expression levels of genes that encode lignin peroxidase (LiP) and manganese peroxidase (MnP), two enzymes that modify lignin present in wood. P. carnosa has more genes for MnP with higher expression levels than LiP, while the reverse has been observed for P. chrysosporium.
The abundances of transcripts predicted to encode lignocellulose-modifying enzymes were then measured over the course of P. carnosa cultivation on four wood species. Profiles were consistent with decay of lignin before carbohydrates. Transcripts encoding MnP were highly abundant, and those encoding MnP and LiP featured significant substrate-dependent response.
Since differences in modes of lignin degradation catalyzed by MnP and LiP could affect the ability of each to degrade lignin from different types of wood, their activity on various hardwoods and softwoods were tested. Results suggest that MnP degrades softwood lignin more effectively than hardwood lignin, consistent with high levels of this enzyme in P. carnosa.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/34792 |
Date | 17 December 2012 |
Creators | MacDonald, Jacqueline |
Contributors | Master, Emma |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds