Title: Construction of classifiers suitable for segmentation of clients Author: Bc. Jana Hricová Department: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Jaromír Antoch, CSc., Department of Probability and Mathematical Statistics Abstract: The master thesis discusses methods that are a part of the data analy- sis, called classification. In the thesis are presented classification methods used to construct tree like classifiers suitable for customer segmentation. Core methodo- logy that is discussed in our thesis is CART (Classification and Regression Trees) and then methodologies around ensemble models that use historical data to cons- truct classification and regression forests, namely Bagging, Boosting, Arcing and Random Forest. Here described methods were applied to real data from the field of customer segmentation and also to simulated data, both processed with RStudio software. Keywords: classification, tree like classifiers, random forests
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:327849 |
Date | January 2013 |
Creators | Hricová, Jana |
Contributors | Antoch, Jaromír, Zvára, Karel |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds