Return to search

Improved strategies for the cultivation of human limbal epithelial (HLE) grafts

The limbal stem cell population is located in the limbal junctional zone between the cornea and the conjunctiva, and is responsible for maintaining the corneal epithelium. Damage to the limbal stem cell population results in a condition known as limbal stem cell deficiency (LSCD), which is characterised by conjunctivalisation of the cornea, visual impairment and persistent irritation. To treat LSCD, an alternative source of human limbal epithelial (HLE) cells must be transplanted back onto the diseased cornea. Limbal tissue grafts have had a moderate degree of success. However, autologous grafts risk damage to the healthy eye, whilst allogeneic grafts are susceptible to immunological rejection. Cultured HLE grafts offer a promising alternative to whole tissue grafts. The production of cultured HLE grafts involves the removal of a small (1-2 mm2) biopsy from the patient’s healthy limbus, followed by ex vivo expansion to produce an epithelial sheet, which is subsequently transplanted onto the damaged corneal surface. However, the production of cultured HLE grafts usually requires the addition of animal-derived products during cell culture. Animal-derived components, such as foetal bovine serum (FBS) and murine 3T3 feeder cells, introduce the patient to potential crossspecies infection and immune responses to xenogeneic antigens. Consequently, the overall aim of this project has been to develop a culture technique free of xenogeneic products for the establishment and propagation of HLE cells. To achieve this aim, alternatives to FBS in the culture medium and 3T3 feeder cells were pursued. A defined serum-free medium (SFM) containing vitronectin (VN), insulin-like growth factor binding protein 3 (IGFBP3), insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) was investigated as an alternative to serumsupplemented medium (SSM) for HLE cell culture. Initial studies focused on the effects of these growth factors on HLE cell metabolic activity and migration. Metabolic activity was primarily stimulated by IGF-I and EGF, with the combination of IGF-I and EGF in solution stimulating metabolic activity to a significantly greater extent than the SSM positive control (p = 0.006). HLE cell migration was also effected by combinations of VN, IGFBP3, IGF-I and EGF. Migration was stimulated above the SFM negative control by the combination of IGFBP3 and IGF-I either with or without the addition of EGF. However, the presence of VN was required for optimal migratory responses (p < 0.003). Hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) were also investigated as additional components to the SFM formulation. HGF significantly stimulated HLE cell metabolic activity and migration (p < 0.02). In contrast, KGF did not significantly stimulate either HLE cell metabolic activity or migration. The addition of either HGF or KGF to the SFM supplemented with VN, IGFBP3, IGF-I and EGF did not significantly enhance the metabolic activity of HLE cells. Therefore, HGF and KGF were no longer pursued as additional components to the SFM formulation. Additional studies were conducted to examine the efficacy of replacing murine 3T3 feeder cells with human ocular stromal cells during HLE cell culture. Initially, stromal cells were isolated from the cornea, limbus and sclera to determine whether there were differences between these stromal cell populations. The results indicated that scleral stromal cells had a significantly larger area and perimeter than either corneal or limbal stromal cells (p < 0.001). Scleral stromal cells were also significantly more rounded than either corneal or limbal stromal cells, as determined by the elliptical factor equation (p < 0.001). Immunocytochemistry also revealed that scleral stromal cells expressed significantly more of the myofibroblast marker ..- smooth muscle actin than either corneal or limbal stromal cells (p < 0.001), and significantly less of the fibroblast/myofibroblast marker Thy-1 than corneal or limbal stromal cells (p < 0.001). Therefore, scleral stromal cells were identified as different in comparison to corneal and limbal stromal cells. Primary HLE cells were cultured with irradiated corneal, limbal and scleral stromal cells. HLE cultures established with either corneal or limbal stromal feeder cells contained more cellular protein (as measured by rhodamine B dye absorbance) than cultures established without feeder cells (p < 0.001). The colony forming efficiency (CFE) of HLE cells established with corneal or limbal stromal feeder cells was also significantly greater than HLE cells established without feeder cells (p < 0.001). In contrast, HLE cultures established with scleral stromal feeder cells contained low levels of cellular protein and had a low CFE, which was not significantly different to the HLE cultures established without feeder cells. Immunocytochemistry indicated that HLE cultures established with scleral feeder cells also showed lower expression of the stem cell markers ABCG2 and C/EBP ... These results suggest that freshly isolated HLE cells can be cultured with irradiated corneal or limbal stromal cells as a replacement for murine 3T3 feeder cells. Finally, the SFM supplemented with VN+IGFBP3+IGF-I+EGF was combined with limbal stromal feeder cells, and examined as a culture technique free of animalderived products. Freshly isolated HLE cells established in SFM supplemented with VN+IGFBP3+IGF-I+EGF and limbal feeder cells contained a similar amount of cellular protein (as measured by crystal violet dye absorbance) when compared to the SSM+3T3 positive control. In addition, the CFE of freshly isolated HLE cells established in VN+IGFBP3+IGF-I+EGF and limbal feeder cells was significantly higher than the SSM+3T3 positive control (p = 0.004). However, a live/dead assay revealed a reduced HLE cell viability in SFM supplemented with VN+IGFBP3+IGFI+ EGF and limbal feeder cells after seven days in culture. In addition, immunocytochemistry demonstrated a lower expression of the stem cell markers ABCG2 and C/EBP .. in the SFM treatment with limbal feeder cells. Therefore, freshly isolated HLE cells can be cultured in SFM supplemented with VN+IGFBP3 +IGF-I+EGF and limbal feeder cells. However, this culture technique is less likely to support the growth of immature limbal stem cells when compared to the SSM+3T3 positive control. Overall, this research has attempted to create a culture system free of animal-derived products for the production of cultured HLE grafts to treat limbal stem cell deficiency. The results show that HLE cells respond to a serum-free medium formulation containing VN+IGFBP3+IGF-I+EGF. In addition, this culture medium can be combined with irradiated stromal cells isolated from the limbus to support HLE culture production. However, the combination of VN+IGFBP3+IGF-I+EGF and limbal feeder cells demonstrated a reduced viability, which indicates that further refinement of the formulation is required. This thesis has also demonstrated differences between stromal cells isolated from the cornea, limbus, and sclera, and has generated knowledge which may impact on the understanding of stromalepithelial regulation.

Identiferoai:union.ndltd.org:ADTP/265785
Date January 2008
CreatorsAinscough, Sarah Louise
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0021 seconds