This thesis consists of two papers devoted to the asymptotics of random matrix ensembles and measure valued stochastic processes which can be considered as generalizations of the Gaussian unitary ensemble (GUE) of Hermitian matrices H=A+A†, where the entries of A are independent identically distributed (iid) centered complex Gaussian random variables. In the first paper, a system of interacting diffusing particles on the real line is studied; special cases include the eigenvalue dynamics of matrix-valued Ornstein-Uhlenbeck processes (Dyson's Brownian motion). It is known that the empirical measure process converges weakly to a deterministic measure-valued function and that the appropriately rescaled fluctuations around this limit converge weakly to a Gaussian distribution-valued process. For a large class of analytic test functions, explicit formulae are derived for the mean and covariance functionals of this fluctuation process. The second paper concerns a family of random matrix ensembles interpolating between the GUE and the Ginibre ensemble of n x n matrices with iid centered complex Gaussian entries. The asymptotic spectral distribution in these models is uniform in an ellipse in the complex plane, which collapses to an interval of the real line as the degree of non-Hermiticity diminishes. Scaling limit theorems are proven for the eigenvalue point process at the rightmost edge of the spectrum, and it is shown that a non-trivial transition occurs between Poisson and Airy point process statistics when the ratio of the axes of the supporting ellipse is of order n -1/3. / Denna avhandling består av två vetenskapliga artiklar som handlar om gränsvärdessatser för slumpmatriser och måttvärda stokastiska processer. De modeller som studeras kan betraktas som generaliseringar av den gaussiska unitära ensembeln (GUE) av hermiteska n x n-matriser H=A+A†, där A är en matris vars element är oberoende, likafördelade, centrerade, komplexa normalfördelade stokastiska variabler. I artikel I betraktas ett system av växelverkande diffunderande partiklar på reella linjen, vissa specialfall av denna modell kan tolkas som egenvärdesdynamiken för matrisvärda Ornstein-Uhlenbeck-processer (Dysons brownska rörelse). Sedan tidigare är det känt att den empiriska måttprocessen konvergerar svagt mot en deterministisk måttvärd funktion och att fluktuationerna runt denna gräns, i lämplig skalning, konvergerer svagt mot en distributionsvärd gaussisk process. För en stor klass av analytiska testfunktioner härleds explicita formler för medelvärdes- och kovariansfunktionalerna för denna fluktuationsprocess. Artikel II behandlar en familj av slumpmatrisensembler som interpolerar mellan GUE och Ginibre-ensembeln, bestående av matriser A som ovan. För denna modell är egenvärdena komplexa och asymptotiskt likformigt fördelade i en ellips i komplexa planet. Skalningsgränsvärdessatser för egenvärdet med maximal realdel och för egenvärdespunktprocessen kring detta visas för ett allmänt val av interpolationsparametern i modellen. Då förhållandet mellan axlarna i den asymptotiska ellipsen är av storleksordning n-1/3 uppträder en övergångsfas mellan Airypunktprocess- och Poissonprocessbeteendena, typiska för GUE respektive Ginibre-ensembeln. / QC 20100705
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4799 |
Date | January 2008 |
Creators | Bender, Martin |
Publisher | KTH, Matematik (Inst.), Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-MAT. MA, 1401-2278 ; 08-MA-05 |
Page generated in 0.0019 seconds