On s'intéresse dans le présent travail au comportement au gel des sols fins limono-argileux traités à la chaux seule, sols valorisables qui sont couramment rencontrés sur les chantiers de terrassement. Trois sols appartenant aux classifications A1, A2, A3 selon la norme NF P 11300, ont été choisis pour cette étude. Ces sols sont traités à 3 dosages en chaux correspondant à 3 objectifs : 1) amélioration (dosage en chaux minimal), 2) stabilisation et insensibilité à l'eau (dosage en chaux intermédiaire), 3) stabilisation et résistance au gel (dosage en chaux le plus élevé). Les sols traités sont ensuite conservés pendant quatre périodes de cure : 7 jours, 28 jours, 90 jours et 365 jours. Les deux processus de gel - le géligonflement et la gélifraction sont étudiés, parallèlement à l'évaluation des performances mécaniques, hydrauliques et microstructurales. Les résultats expérimentaux ont montré que les propriétés hydrauliques (la succion au front de gel, sp et la conductivité hydraulique à l'état non-saturé, kunsat) sont les paramètres qui gouvernent le phénomène de géligonflement des sols, traités ou non. Les résultats ont également mis en évidence le lien direct existant entre la microstructure (la distribution porale) et les propriétés hydrauliques du sol, principalement en termes de capacité de rétention d'eau et conductivité hydraulique. Le traitement augmente les performances mécaniques des sols d'une part, et amène d'autre part à des modifications de leur microstructure ; ceci induit des changements vis-à-vis de leur sensibilité au gel. Les sols sont plus gélifs directement après le traitement, cette sensibilité au gel diminuant avec le temps de cure. Une modélisation simple permettant d'estimer le gonflement au gel à partir de la succion au front de gel et de la valeur de conductivité hydraulique à l'état non-saturé a été proposée et validée. Vu que la détermination de la conductivité hydraulique à l'état non-saturé n'est pas un essai couramment pratiqué au sein de la plupart des laboratoires, un critère basé sur la succion au front de gel, sp, et la conductivité hydraulique à l'état saturé, ksat a été proposé pour évaluer la sensibilité des sols au gel. L'essai de gélifraction consiste à évaluer un coefficient de résistance de l'éprouvette de sol après 10 cycles de gel/dégel, RFT (%) - « retained strength factor after freeze-thaw testing ». Les résultats expérimentaux montrent que la valeur RFT des sols traités varie de 0% (lorsque les éprouvettes de sol perdent totalement leur résistance à la compression simple et sont détruites après 10 cycles de gel/dégel) à 90%. Quand RFT ≥ 60%, aucune dégradation visuelle de la surface des éprouvettes des sols traités n'est constatée. Ainsi, cette valeur est proposée comme critère d'acceptation des matériaux constitutifs d'une couche de forme subissant le gel avant son recouvrement. L'étude de l'effet du nombre des cycles de gel/dégel montre une diminution importante de la performance mécanique (RFT) durant trois premiers cycles de gel/dégel, et ce paramètre se stabilisant après 10 cycles. A l'aide de la technique de µ Tomographie X, l'endommagement interne des éprouvettes de sol ayant subi des cycles de gel/dégel a été quantifié. Une corrélation directe entre la diminution de performance mécanique et l'augmentation de l'indice de l'endommagement de l'éprouvette a été mise en évidence. Enfin, un modèle d'endommagement permettant d'évaluer la dégradation de la performance mécanique avec l'augmentation de l'indice d'endommagement a été établi / The present work deals with the behaviour of fine-grained silty and clayey soils treated with lime under frost. Those soils are frequently encountered in earthworks. Three soils corresponding to A1, A2, A3 classes according French NF P 11-300 standard were chosen for this study. These soils were treated with 3 lime dosages corresponding to three objectives: 1) improvement (minimum dosage), 2) stabilization and insensitivity to water (intermediate dosage), 3) stabilization and frost resistance (highest dosage). Lime-treated soils were subsequently cured for different times: 7, 28, 90, 365 days. Two frost processes, frost heave and freeze-thaw cycles, were applied in parallel with the assessment of mechanical, hydraulic and microstructural properties. Experimental results evidenced that it is the hydraulic properties (suction at frost front, sp and unsaturated hydraulic conductivity, kunsat) that govern the frost heave phenomenon of soils, treated or not. In addition, this study demonstrates the direct link between the microstructure (the pore size distribution) and the hydraulic properties (water retention curve and hydraulic conductivity). The treatment on one hand improves the mechanical performances of soils, and on the other hand modify their microstructure, and thus changes their frost sensitivity. The frost susceptibility increases directly after treatment, and then decreases with curing time. Based on the suction at frost front and the unsaturated hydraulic conductivity, a simple model was proposed and validated allowing to estimate the frost heave. Considering that the determination of unsaturated hydraulic conductivity is not a test commonly performed by most laboratories, a criterion based on the suction at frost front and the saturated hydraulic conductivity was proposed to estimate the frost sensibility of soils. The second frost resistance test consists of measuring the retained strength factor after 10 freeze-thaw cycles, RFT (%). The results obtained show that RFT of lime treated soil varies from 0% (when soil specimen completely loses its resistance and collapses after 10 freezethaw cycles) to 90%. When RFT is higher than 60%, no visual damage was observed on the specimen surface; consequently, this value is proposed as a criterion for acceptance of lime treated soil in capping layer before covering. In addition, the study of effect of freeze-thaw cycles showed a significant decrease of mechanical performance (RFT) during the first three cycles, and a stabilization after 10 cycles. Using X-ray Tomography, the intern damage of specimens due to freeze-thaw cycles was quantified. A correlation between the decrease of mechanical performance and the increase of damage index was evidenced. A model was then developed to evaluate the degradation of mechanical performance with the increase of damage index
Identifer | oai:union.ndltd.org:theses.fr/2015PEST1064 |
Date | 21 April 2015 |
Creators | Nguyen, Thi Thanh Hang |
Contributors | Paris Est, Cui, Yu Jun |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds