Return to search

Análise hiperespectral de folhas de Brachiaria brizantha cv. Marandú submetidas a doses crescentes de nitrogênio / Hyperspectral analysis of Brachiaria brizantha cv. Marandú leaves under contrasting nitrogen levels

O sensoriamento remoto é uma estratégia que pode ajudar no monitoramento da qualidade das pastagens. Objetivou-se com esse estudo analisar a resposta espectral das folhas de Brachiaria brizantha cv. Marandú, adubada com doses crescentes de ureia, para diferenciar e predizer teores foliares de nitrogênio (TFN). Os tratamentos foram distribuídos em blocos ao acaso (DBC), composto por quatro blocos e quatro tratamentos, totalizando 16 parcelas. Foram utilizadas doses crescentes de adubação com ureia: 0, 25, 50, 75 kg de N/ha/corte. Ao longo do experimento foram realizadas 7 coletas, sendo coletadas 8 folhas por parcela. Essas folhas foram submetidas à análise hiperespectral e posterior análise química do teor de nitrogênio. Ao analisar a resposta espectral das folhas, observou-se diferenças estatísticas entre os tratamentos na região do visível em todas as coletas, com ênfase na região de 550 nm (verde). Por meio de análise discriminante linear (LDA) realizada para cada coleta, os centróides gerados por todos os tratamentos apresentaram diferenças significativas, com exceção do LD1 nas coletas 6 e 7 que não apresentou distinção entre os tratamentos de 50 e 75 kg de N/ha/corte, e LD2 na coleta 5 que não apresentou distinção entre os tratamentos de 0 e 50 kg de N/ha/corte. As equações de regressão multivariada obtidas pelo método de quadrados mínimos parciais (PLSR), geraram valores razoáveis a bons de R2 (0,53 a 0,83) na predição dos TFN, onde os comprimentos de onda com maior peso nessas regressões estão na região do red edge (715 a 720 nm). Por fim, ao testar a performance de alguns Índices de Vegetação da literatura, as coletas 4, 6 e 7 apresentaram bons coeficientes de determinação (R2) que variaram de 0,65 a 0,73; uma característica em comum nos índices que melhor estimaram os TFN é a presença de comprimentos de ondas que fazem parte da região do red edge. / Remote sensing is a set of techniques that can help to monitor pasture quality. The object of this study is to analyze the spectral response from Brachiaria brizantha cv. Marandú leaves, under contrasting nitrogen levels, to differentiate and predict leaf nitrogen content. The treatments were set in a Randomized Block Design, composed of four blocks and four treatments, totaling 16 plots. Increasing doses of urea fertilization were used: 0, 25, 50, 75 kg N/ha/mowing. During the experiment, 7 data collections were performed, and 8 leaves per plot were extracted for each data collection. These leaves were submitted to hyperspectral data extraction and subsequent chemical analysis to quantify the nitrogen content. When analyzing the spectral pattern of the leaves, statistical differences among samples with different nitrogen levels were noticeable in the visible range of the spectrum in all the collections, with emphasis on the 550 nm region (green). Through linear discriminant analysis (LDA), performed for each collection, the generated centroids by the samples of each nitrogen level presented significant differences, except for LD1 in collections 6 and 7, which did not present a distinction between treatments of 50 and 75 kg of N/ha/mowing, and LD2 in collection 5 that did not distinguish between treatments of 0 and 50 kg of N/ha/mowing. The partial least square regression (PLSR) method generated reasonable to good values of R2 (0.53 to 0.83) for the prediction of leaf nitrogen content, where the wavelengths with the highest coefficient in these models are in the red edge region of the spectrum (715 to 720 nm). Finally, when testing the performance of some Vegetation Indexes from literature, collections 4, 6 and 7 presented good determination coefficients (R2) ranging from 0.65 to 0.73; a common feature in the indexes that best estimate the nitrogen content is the presence of wavelengths from the red edge region of the spectrum.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11072019-160520
Date14 February 2019
CreatorsTakushi, Mitsuhiko Reinaldo Hashioka
ContributorsFiorio, Peterson Ricardo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds