For certain nonlinear Schroedinger equations there exist solutions which are called solitary waves. Addition of a potential $V$ changes the dynamics, but for small enough $||V||_{L^\infty}$ we can still obtain stability (and approximately Newtonian motion of the solitary wave's center of mass) for soliton-like solutions up to a finite time that depends on the size and scale of the potential $V$. Our method is an adaptation of the well-known Lyapunov method.
For the sake of completeness, we also prove long-time stability of traveling solitons in the case $V=0$.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:math_etds-1050 |
Date | 01 January 2017 |
Creators | Lindgren, Joseph B. |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Mathematics |
Page generated in 0.0018 seconds