Return to search

Automatic Parking and Path Following Control for a Heavy-Duty Vehicle

The interest in autonomous vehicles has never been higher and there are several components that need to function for a vehicle to be fully autonomous; one of which is the ability to perform a parking at the end of a mission. The objective of this thesis work is to develop and implement an automatic parking system (APS) for a heavy-duty vehicle (HDV). A delimitation in this thesis work is that the parking lot has a known structure and the HDV is a truck without any trailer and access to more computational power and sensors than today's commercial trucks. An automatic system for searching the parking lot has been developed which updates an occupancy grid map (OGM) based on measurements from GPS and LIDAR sensors mounted on the truck. Based on the OGM and the known structure of the parking lot, the state of the parking spots is determined and a path can be computed between the current and desired position. Based on a kinematic model of the HDV, a gain-scheduled linear quadratic (LQ) controller with feedforward action is developed. The controller's objective is to stabilize the lateral error dynamics of the system around a precomputed path. The LQ controller explicitly takes into account that there exist an input delay in the system. Due to minor complications with the precomputed path the LQ controller causes the steering wheel turn too rapidly which makes the backup driver nervous. To limit these rapid changes of the steering wheel a controller based on model predictive control (MPC) is developed with the goal of making the steering wheel behave more human-like. A constraint for maximum allowed changes of the controller output is added to the MPC formulation as well as physical restrictions and the resulting MPC controller is smoother and more human-like, but due to computational limitations the controller turns out less effective than desired. Development and testing of the two controllers are evaluated in three different environments of varying complexity; the simplest simulation environment contains a basic vehicle model and serves as a proof of concept environment, the second simulation environment uses a more realistic vehicle model and finally the controllers are evaluated on a full-scale HDV. Finally, system tests of the APS are performed and the HDV successfully parks with the LQ controller as well as the MPC controller. The concept of a self-parking HDV has been demonstrated even though more tuning and development needs to be done before the proposed APS can be used in a commercial HDV.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-144496
Date January 2017
CreatorsMörhed, Joakim, Östman, Filip
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Reglerteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds