Research into observer design for non-linear discrete-time systems has produced many design methods. There is no general design method however and that provides the motivation to search for a new simple and realizable design method. In this thesis, an observer for non-linear discrete-time systems is designed using the sliding mode technique. The equation of the observer error is split into two parts; the first part being a linearized model of the system and the second part an uncertain vector. The sliding mode technique is introduced to eliminate the uncertainty caused by the uncertain vector in the observer error equation. By choosing the sliding surface and the boundary layer, the observer error is attracted to the sliding surface and stays within the sliding manifold. Therefore, the observer error converges to zero. The proposed technique is applied to two cases of observers for nonlinear discrete-time systems. The second case is chosen to be a particular practical system, namely the non-linear discrete-time ball and beam system. The simulations show that the sliding mode technique guarantees the convergence of the observer error for both systems.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:443294 |
Date | January 2007 |
Creators | Algarawi, Mohammed |
Contributors | Turner, P. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/5072 |
Page generated in 0.0025 seconds