Return to search

Desenvolvimento de ferramenta computacional de alta ordem para a solução de problemas de propagação acústica. / Development of a high-order computational tool for solving acoustic propagation problems

O desenvolvimento de uma ferramenta de Dinâmica de Fluidos Computacional que utiliza Método de Elementos Finitos baseada na discretização de Galerkin descontínuo é apresentado neste trabalho com objetivo de resolver a equação de Euler linearizada para escoamento compressível em duas dimensões usando malhas estruturadas e não estruturadas. Procuramos utilizar esta ferramenta como um propagador de ondas sonoras para estudar fenômenos aeroacústicos. O problema de Riemann presente no fluxo convectivo da equação de Euler é tratado com um método upwind HLL e para o avanço da solução no tempo é usado o método de Runge-Kutta explícito de 4 estágios com segunda ordem de precisão. A eficiência computacional, a convergência do método e a precisão são testadas através de simulações de escoamentos já apresentadas na literatura. A taxa de convergência para altas ordens de aproximação é assintótica que é um resultado compatível com a formulação Galerkin descontínuo. / The development of a Computation Fluid Dynamic Tool based on the Finite Element Method with discontinuous Galerkin discretization is presented in this work. The aim of this study is to solve the compressible linearized Euler\'s equation in two dimensions on structured and non structured meshes. This tool has been used as a means to study aeroacoustics phenomena. The Riemann\'s problem presented on a convective flow in Euler\'s equation is tackled by a HLL\'s method and the time integration being used is the four-stage Runge-Kutta explicit method with second order of accuracy. The computational efficiency, the convergence of the method and the accuracy are tested by comparing our results for flow simulations with those that are available in the literature. The convergence rate to high approximation order is asymptotic and it shows a result which is compatible with a discontinuous Galerkin formulation.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26062014-110754
Date29 April 2013
CreatorsMaciel, Saulo Ferreira
ContributorsCarmo, Bruno Souza
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0076 seconds