This thesis describes numerical methods for the evaluation of the series impedance matrix and shunt admittance matrix of underground cable systems. In the series impedance matrix, the terms most difficult to compute are the internal impedances of tubular conductors and the earth return impedance. The various formulae for the internal impedance of tubular conductors and for the earth return impedance are, therefore, investigated in detail. Also, a more accurate way of evaluating the elements of the admittance matrix with frequency dependence of the complex permittivity is proposed.
Various formulae have been developed for the earth return impedance of buried cables. Using the Pollaczek's formulae as the standard for comparison, the formula of Ametani and approximations proposed by other authors are studied. Mutual impedance between an underground cable and an overhead conductor is studied as well. The internal impedance of a laminated tubular conductor is different from that of a homogeneous tubular conductor. Equations have been derived to evaluate the internal impedances of such laminated tubular conductors. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/26726 |
Date | January 1986 |
Creators | Navaratnam, Srivallipuranandan |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0019 seconds