SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L-IR = 10(11.91) L-circle dot. We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR approximate to 140 M-circle dot yr(-1), estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in H beta, He I lambda lambda 5876, 10830, and other emission lines consistently with an offset velocity of approximate to 900 km s(-1), as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He I lambda 10830 and the bulk blueshifting of [O III].5007), while there exist blueshifted broad absorption lines (BALs) in Na I. D and He I lambda lambda 3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 10(4) < n(H) less than or similar to 10(5) cm(-3), ionization parameter 10(-1.3) less than or similar to U 10(-0.7), and column density 10(22.5) less than or similar to N-H less than or similar to 10(22.9) cm(-2), which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of similar to 48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 10(44)-10(46) erg s(-1). J1634+2049 has a off-centered galactic ring on the scale of similar to 30. kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the coevolution scenario invoking galaxy merger (or violent interaction) and quasar feedback. Its proximity enables our further observational investigations in detail (or tests) of the co-evolution paradigm.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621240 |
Date | 05 May 2016 |
Creators | Liu, Wen-Juan, Zhou, Hong-Yan, Jiang, Ning, Wu, Xufen, Lyu, Jianwei, Shi, Xiheng, Shu, Xinwen, Jiang, Peng, Ji, Tuo, Wang, Jian-Guo, Wang, Shu-Fen, Sun, Luming |
Contributors | Univ Arizona, Steward Observ |
Publisher | IOP PUBLISHING LTD |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016. The American Astronomical Society. All rights reserved. |
Relation | http://stacks.iop.org/0004-637X/822/i=2/a=64?key=crossref.d09462bdf19a4404256b1f35b9b8ba74 |
Page generated in 0.0017 seconds