Return to search

Discrete event modelling and Simulation of an Assembly Line at GKN Driveline Köping AB

Today’s economic conditions force companies and organizations to work more effectively in their processes due to different reasons.  Especially; after the Second World War, owing to the changing business perception and strong competition between companies, new terms such as productivity, flexible systems, efficiency, and lean came into industrial engineering discipline. However, these kinds of terms also brought a new question. How are they reached?  At that point, discrete event simulation has been used as an effective method to give an answer to this question. From this perspective; this project focuses on discrete event simulation and its role in real industrial processes. The main interest of this paper is discrete event simulation, but in this study we also tried to give some detailed information about other types of simulations such as continuous and discrete rate. Basically, we can say that this paper consists of several parts. In the beginning of this paper, the reader can find some theoretical information about simulation itself and the requirements for implementing it on real processes. Secondly, we tried to explain different types of simulations and the reason why we used discrete event simulation instead of continuous or discrete rate in our case study. Furthermore, one of the main areas of this research is to inform the reader about how computer support is used as a simulation tool by today’s companies. To do this, a powerful software, Extendsim8, is described in detail.  The reader is able to find all the information about how to create discrete event models in this software. In case study part, we are able to find the results of the five months work that we did between February and June at GKNDriveline Köping AB in Sweden. In these five months, we had been busy with analyzing an assembly line, collecting data, creating a simulation model, discussion with workers and engineers and doing some tests such as validation & verification. In this part, the reader can find all the information about the production line and the simulation model. In conclusion, reader can find the results of the project at the end with the visualization of future state. As it will be discussed repeatedly in the paper, validation is one of the important steps in a simulation project. Therefore, in order to see the reliability of our simulation model, different calculations and tests were made. Last of all, some of results will be shown by graphs and tables in order to give better insight to reader.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-20266
Date January 2013
CreatorsYesilgul, Mustafa, Nasser, Firas
PublisherMälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds