Jointless bridges are advantageous in removing mechanical joints which are a known cause of bridge deterioration. Elimination of joints provides a smoother riding surface and removes the possibility of de-icing salts penetrating the deck and corroding the deck reinforcing and underlying bridge superstructure. Jointless bridges are traditionally constructed by monolithically casting the entire bridge deck on beams after they have been erected. However, this process requires extensive in-field formwork and lengthy traffic closures. The Texas Department of Transportation proposes a new method of constructing jointless bridges using prefabricated girder-and-deck units connected on-site with cast-in-place closure pours. This new system will expedite construction and reduce disturbances to the traveling public.
The objective of this experimental study was to investigate the behavior of the cast-in-place closure pour slab and to determine if it responds to wheel loads in the same way as a traditional monolithic continuous deck. The effects of the cold joints and discontinuous steel details are the focus of the research work.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/1356 |
Date | 17 February 2005 |
Creators | Brush, Natalie Camille |
Contributors | James, Ray |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 4087774 bytes, electronic, application/pdf, born digital |
Page generated in 0.0022 seconds