<p>Biological membranes play host to a number of processes essential for cellular function and are the most important biological interface. The structurally complex and highly dynamic nature of the membrane poses significant measurement challenges, requiring an experimental technique capable of accessing very short, nanometer length scales, and fast, micro-pico second time scales.</p> <p>The experimental work presented in this thesis uses a variety of neutron scattering techniques to study the structure and dynamics of biologically relevant model membrane systems. The main body of this work can be sub-divided into two distinct topics: (1) lateral diffusion of lipid molecules in a bilayer; and (2) the measurement of domains in the membrane.</p> <p>Diffusion is the fundamental mechanism for lipids and proteins to move throughout the lipid matrix of a biological membrane. Despite a strong effort to model lipid diffusion, there is still no coherent model which describes the motion of lipid molecules from less than a lipid-lipid distance to macroscopic length scales. The experiments presented on this topic attempt to extend the range over which diffusion is typically measured by neutron scattering, to initiate the development of a more complete lipid diffusion model.</p> <p>Lipid domains and rafts are thought be platforms for many cellular functions; however, their small size and transient nature makes them notoriously difficult to observe. The penultimate chapter of this thesis provides evidence supporting the existence of domains in a model lipid/cholesterol system by probing of the dynamics of the system. The challenge of observing these structures directly was addressed by modifying the traditional neutron triple-axis spectrometry setup to increase its sensitivity to systems with short-range order. This technique was employed to examine the coexistence of fluid and gel domains in a single-component lipid bilayer system, as well as the presence of highly ordered lipid domains in a model membrane containing cholesterol.</p> / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/13026 |
Date | January 2013 |
Creators | Armstrong, Clare L. |
Contributors | Rheinstadter, Maikel, Cecile Fradin, Bruce Gaulin, Physics and Astronomy |
Source Sets | McMaster University |
Detected Language | English |
Type | thesis |
Page generated in 0.0023 seconds