Return to search

Measurement and Evaluation of Antioxidant Status and Relation to Oxidative Stress in Humans

<p>Numerous diseases are associated with reduced antioxidant defence and oxidative stress. The antioxidant defence includes dietary and endogenous antioxidants and involves complex interactions between them. The effects of dietary factors on antioxidant status and oxidative stress of healthy humans were investigated in the studies described in this thesis. Assays of plasma antioxidant capacity encompass interactions between various antioxidants. Although uric acid has an unclear function as an antioxidant, it is a major determinant of antioxidant capacity. We measured antioxidant capacity in the presence and absence of uric acid to provide more information on the application of measures of antioxidant capacity. Individuals with high dietary intakes of various antioxidants and antioxidant rich foods, especially when combined, had higher plasma antioxidant capacities than those with lower antioxidant intakes. However, there were no associations between dietary intake of antioxidants or antioxidant rich foods and the plasma concentration of F<sub>2</sub>-isoprostanes, which is considered a reliable biomarker for oxidative stress. Intakes of various doses of a mixture of bilberry juice and black tea, rich in flavonoids for four weeks, increased antioxidant capacity in some groups, but urine levels of F<sub>2</sub>-isoprostanes were not affected. There were substantial individual variations in responses to the drinks related to baseline antioxidant capacity. Supplementation with eicosapentaenoic acid and docosahexaenoic acid decreased the plasma levels of F<sub>2</sub>-isoprostanes, but not prostaglandin F<sub>2α</sub> formation or antioxidant capacity. </p><p>It was concluded that a high intake of foods rich in antioxidants is related to improved antioxidant status. After intake of foods rich in antioxidants, the antioxidant status may increase, but with considerable individual variation in the responses, which warrants further investigation. Lipid peroxidation <i>in vivo</i> is not easily affected by dietary antioxidants in healthy humans. Although n-3 fatty acids are highly unsaturated, they reduce nonenzymatic free radical-catalyzed lipid peroxidation, but not enzymatic lipid peroxidation.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-6742
Date January 2006
CreatorsNälsén, Cecilia
PublisherUppsala University, Clinical Nutrition Research, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 131

Page generated in 0.0035 seconds