Return to search

ATGL-1 and longevity in C. elegans

Obesity and obesity related diseases represent a leading cause of mortality in the United States and worldwide. Our research is oriented towards the role of lipid metabolism in longevity. Adipose triglyceride lipase, or ATGL, is a rate limiting enzyme in the lipolytic pathway. The nematode, C. elegans has many conserved biologic pathways to mammals, and the lipolytic pathway is one of them. The homologues include the insulin receptor (DAF-2), FoxO1 (DAF-16), and ATGL (ATGL-1).
In this study, we use C. elegans as a model to study the role of lipolysis in longevity. It has been previously shown in our lab that overexpression of ATGL-1::GFP increases lifespan. To confirm that the increase in longevity was due to the overexpression of ATGL-1, we have used RNA interference to downregulate expression of ATGL-1::GFP. We have corroborated that ATGL-1::GFP worms have longer lifespans, than wildtype N2 worms.
We have also found that RNAi control diet does not affect lifespan of ATGL-1::GFP strains. However, ATGL-1::GFP strains on an RNAi GFP diet demonstrate reduced levels of ATGL-1::GFP and have shorter lifespans compared to their control counterparts. Our findings confirm that overexpression of ATGL-1 increases lifespan of C. elegans probably due to its role in reducing fat content.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/36261
Date11 June 2019
CreatorsAdeleke, Ayomide Semmy
ContributorsKandror, Konstantin, Deeney, Jude
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nd/4.0/

Page generated in 0.0018 seconds