Return to search

Transferrin binding protein B structure, function, and export in Neisseria gonorrhoeae

Iron, an essential nutrient for most microorganisms, is sequestered in the host by iron-binding proteins, such as lactoferrin and transferrin. Neisseria gonorrhoeae utilizes transferrin as an iron source and its iron acquisition system is composed of two transferrin binding proteins: TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter and TbpB is a bilobed, surface exposed lipoprotein. TbpB can distinguish between apo- and holo-transferrin which is involved in increasing the efficiency of iron uptake through the Tbps. It is anchored in the outer leaflet of the outer membrane by its lipid moiety. We aimed to identify the mechanism of TbpB export to the cell surface. No conclusions could be made from our results but we identified a protein that could potentially be involved in lipoprotein transport. TbpB is a bilobed protein with controversy over which lobe is involved in transferrin binding. In this study, we constructed a C-lobe deletion of TbpB to determine the role of the C-lobe in TbpB function. Results presented here showed deletion of the C-lobe caused degradation of TbpB and the minimal protein expressed was unable to bind transferrin both in vitro and in vivo. We were also able to demonstrate the TbpB C-lobe deletion is able to support limited transferrin-mediated growth, indicating some function of TbpB is retained. These results confirmed that both lobes are necessary for wild-type function of TbpB.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1381
Date13 July 2012
CreatorsWeck, Meredith L.
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0127 seconds