Ce travail présente une étude originale de l'interaction laser-matière en régime nanoseconde à l'aide d'une double approche expériences-modélisation numérique. L'approche expérimentale vise à caractériser les plasmas produits par laser et l'empreinte laissée par le faisceau laser sur la cible. L'approche numérique s'appuie sur un modèle 1D qui permet de décrire le chauffage de la cible par le laser, l'ablation de matière et la formation d'un plasma dans cette matière ablatée dûe à l'interaction avec le laser. Des comparaisons des résultats obtenus par les deux approches permettent d'évaluer le degré de précision des résultats issus du modèle. Ces comparaisons se limitent aux 100 premières nanosecondes d'expansion du plasma. Nous montrons ainsi que le modèle décrit assez bien l'écrantage du faisceau laser par le plasma, l'expansion du plasma et la propagation de l'onde de choc dans le gaz ambiant. De plus, les valeurs des seuils d'ablation et de formation du plasma sont calculées avec une bonne précision. En revanche, des écarts sont constatés pour la modélisation des processus d'interaction entre le laser et la cible. Le degré de précision du modèle est au final suffisamment bon pour nous permettre d'étudier précisément l'effet du gaz ambiant sur les propriétés et la dynamique du plasma. / This work provides an original study about laser-matter interaction in the nanosecond regime, based on a coupling between the experiments and the modelling. The experimental study provides a description of the dynamics of the laser produced plasmas. The modelling, based on a 1D numerical scheme, is aimed to describe the heating of the target by the laser pulse, the process of matter ablation and the formation of a plasma in this ablated material due to the interaction with the laser. The comparisons between both experimental and numerical results give the order of accuracy of the results obtained by modelling. These comparisons are limited to the first hundred nanoseconds of plasma expansion. We show that the plasma shielding, the plasma expansion and the propagation of the shockwave are well modelled. Furthermore, the values of both ablation and plasma formation threshold are accurately computed. However, many differences are observed in the results concerning the laser-target interaction process. Finally, the degree of accuracy of the model is sufficiently high to study precisely the background gas effet on both plasma dynamics and properties.
Identifer | oai:union.ndltd.org:theses.fr/2011AIX22019 |
Date | 04 April 2011 |
Creators | Clair, Guillaume |
Contributors | Aix-Marseille 2, Hermann, Jörg |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds