Return to search

Lipschitzovská zobrazení v rovině / Lipschitz mappings in the plane

In this thesis we consider an open question of Feige that asks whether there always exists a constantly Lipschitz bijection of an n2 -point subset of Z2 onto a regular grid [n] × [n] for every n ∈ N. We relate this question to an already resolved problem of the existence of a bounded positive measurable density in R2 that is not the Jacobian of any bilipschitz map. This problem was resolved by Burago and Kleiner [1], and independently, by McMullen [12]. We present the work of Burago and Kleiner, analyze its relation to Feige's problem and sug- gest a continuous formulation of Feige's question in a special case. Then we present the Burago-Kleiner density, make several observation about the properties of this density, and after that we construct a density that is everywhere nonrealizable as the Jacobian of a bilipschitz map. Subsequently, we discuss our continuous variant of Feige's question, provide several observation concerning it, and finally, we try to use the everywhere nonrealizable density constructed before to answer our continuous variant of Feige's question. However, this last task still remains incomplete. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:335118
Date January 2014
CreatorsKaluža, Vojtěch
ContributorsMatoušek, Jiří, Šámal, Robert
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds