Return to search

Improvement Strategies for the Production of Renewable Chemicals by Synechocystis sp PCC 6803

abstract: Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes. / Dissertation/Thesis / Ph.D. Plant Biology 2013

Identiferoai:union.ndltd.org:asu.edu/item:18752
Date January 2013
ContributorsGonzalez Esquer, Cesar Raul (Author), Vermaas, Willem (Advisor), Chandler, Douglas (Committee member), Bingham, Scott (Committee member), Nielsen, David (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format119 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0024 seconds