The objective of this research was to design aluminum powder metallurgy (PM) alloys and processing strategies that yielded sintered products with thermal properties that rivaled those of the cast and wrought aluminum alloys traditionally employed in heat sink manufacture. Research has emphasized PM alloys within the Al-Mg-Sn system. In one sub-theme of research the general processing response of each PM alloy was investigated through a combination of sintering trials, sintered density measurements, and microstructural assessments. In a second, the thermal properties of sintered products were studied. Thermal conductivity was first determined using a calculated approach through discrete measurements of specific heat capacity, thermal diffusivity and density and subsequently verified using a transient plane source technique on larger specimens. Experimental PM alloys achieved >99% theoretical density and exhibited thermal conductivity that ranged from 179 Wm-1K-1 to 225 Wm-1K-1. Thermal performance was largely dominated by the amount of magnesium present within the aluminum grains and in turn, bulk alloy chemistry. Data confirmed that the novel PM alloys were highly competitive with even the most advanced heat sink materials such as wrought 6063 and 6061.
Two methods of thermal analysis were employed in order to determine the thermal conductivity of each alloy. This first consisted of individual analysis of the specific heat capacity (Cp), thermal diffusivity (?) and density (?) as a function of temperature for each alloy. The thermal conductivity (K) was subsequently determined through the relationship: K=C_p ??. The second means of thermal analysis was a direct thermal conductivity measure using a transient plane source (TPS). The thermal diffusivity and density of samples were both found to decrease with temperature in a linear fashion. Conversely, the specific heat capacity was found to increase with temperature. The only measured thermal property that appeared to be influenced by the alloy chemistry was the thermal diffusivity (and subsequently the calculated thermal conductivity). Both means of thermal analysis showed high thermal conductivity in alloys with low concentrations of magnesium, demonstrating the significance of having alloying elements in solid solution with aluminum. Overall, several alloys were developed using a press and sinter approach that produced higher levels of thermal conductivity than conventional aluminum heat sink materials. The highest thermal conductivity was achieved by alloy Al-0.6Mg-1.5Sn with a calculated value of 225.4 Wm-1K-1. This novel aluminum PM alloy was found to exceed both wrought 6061 and 6063 (195 and 217 Wm-1K-1 respectively). Furthermore, PM alloy Al-0.6Mg-1.5Sn was found to have a significant advantage over die-cast A390 (142 Wm-1K-1).
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/35444 |
Date | 06 August 2013 |
Creators | Smith, Logan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Page generated in 0.0019 seconds