Return to search

Data analysis for Systematic Literature Reviews

Systematic Literature Reviews (SLR) are a powerful research tool to identify and select literature to answer a certain question. However, an approach to extract inherent analytical data in Systematic Literature Reviews’ multi-dimensional datasets was lacking. Previous Systematic Literature Review tools do not incorporate the capability of providing said analytical insight. Therefore, this thesis aims to provide a useful approach comprehending various algorithms and data treatment techniques to provide the user with analytical insight on their data that is not evident in the bare execution of a Systematic Literature Review. For this goal, a literature review has been conducted to find the most relevant techniques to extract data from multi-dimensional data sets and the aforementioned approach has been tested on a survey regarding Self-Adaptive Systems (SAS) using a web-application. As a result, we find out what are the most adequate techniques to incorporate into the approach this thesis will provide.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-105122
Date January 2021
CreatorsChao, Roger
PublisherLinnéuniversitetet, Institutionen för informatik (IK)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds