Return to search

State Estimation and Thermal Fault Detection for Lithium-Ion Battery Packs: A Deep Neural Network Approach

Recently, lithium-ion batteries (LIBs) have achieved wide acceptance for various energy storage applications, such as electric vehicles (EVs) and smart grids. As a vital component in EVs, the performance of lithium-ion batteries in the last few decades has made significant progress. The development of a robust battery management system (BMS) has become a necessity to ensure the reliability and safety of battery packs. In addition, state of charge (SOC) estimation and thermal models with high-fidelity are essential to ensure efficient BMS performance.
The SOC of a LIB is an essential factor that should be reported to the vehicle’s electronic control unit and the driver. Inaccurate reported SOC impacts the reliability and safety of the lithium-ion battery packs (LIBP) and the vehicle. Different algorithms are used to estimate the SOC of a LIBP, including measurement-based, adaptive filters and observers, and data-driven; however, there is a gap in feasibility studies of running these algorithms for multi-cell LIBP on BMS microprocessors. On the other hand, temperature sensors are utilized to monitor the temperature of the cells in LIBPs. Using a temperature sensor for every cell is often impractical due to cost and wiring complexity. Robust temperature estimation models can replace physical sensors and help the fault detection algorithms by providing a redundant monitoring system.
In this thesis, an accurate SOC estimation and thermal modeling for lithium-ion batteries (LIBs) are presented using deep neural networks (DNNs). Firstly, two DNN-based SOC estimation algorithms, including a feedforward neural network (FNN) enhanced with external filters and a recurrent neural network with a long short-term memory layer (LSTM), are developed and benchmarked versus an extended Kalman filter (EKF) and EKF with recursive least squares filter (EKF-RLS) SOC estimation algorithms. The execution time of EKF, EKF-RLS, FNN, and LSTM SOC estimation algorithms with similar accuracy was found to be 0.24 ms, 0.25 ms, 0.14 ms, and 0.71 ms, respectively. The DNN SOC estimation algorithms were also demonstrated to have lower RAM use than the EKFs, with less than 1 kB RAM required to run one estimator.
The proposed FNN and LSTM models are also used to predict the surface temperature of different lithium-ion cells. These DNN models are shown to be capable of estimating temperature with less than 2 ⁰C root mean square error for challenging low ambient temperature drive cycles and just 0.3 ⁰C for 4C rate fast charging conditions. In addition, a DNN model which is trained to estimate the temperature of a new battery cell, is found to still have a very low error of just 0.8 ⁰C when tested on an aged cell.
Finally, an integrated physics, and neural network-based battery pack thermal model (LP+FNN) is developed and used to detect and identify different thermal faults of a LIBP. The proposed fault detection and identification method is validated using various thermal faults, including fan system failure, airflow lower and higher than setpoint, airflow blockage of submodule and temperature sensor reading faults. The proposed method is able to detect different cooling system faults within 10 to 35 minutes after fault occurrence. In addition, the proposed method demonstrated being capable of detecting temperature sensor reading offset and scale faults of ±3 ⁰C and ±0.15% or more, respectively with 100% accuracy. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28254
Date January 2023
CreatorsNaguib, Mina Gamal
ContributorsEmadi, Ali, Electrical and Computer Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds