Return to search

Design, Development and Structure of Liquid and Solid Electrolytes for Lithium Batteries

Energy storage is crucial for intermittent renewable energy sources, electric vehicles, and portable devices. The continuously increasing energy consumption in these industries necessitates the enhancement of commercial lithium-ion batteries (LIB), especially regarding their safety and energy density. Historically, aqueous electrolytes were the norm in the battery industry. Prior to the development of lithium batteries, most commercially significant batteries used water as the solvent. In the past decade, "highly concentrated" electrolytes resurrected the notion of an aqueous lithium-ion battery (ALIB). Significant efforts have been made since then to comprehend the interfacial stability of these high-concentration electrolytes, and make them suitable for use in batteries especially high voltage ones. Another candidate for future batteries is All-Solid-State Batteries (ASSB) as they have the potential to double, or even triple, the energy density figures we currently achieve in LIBs mainly due to their ability to utilize lithium metal anode which has the highest specific capacity among anodes (3860 mAh g⁻¹), lowest reduction potential (-3.04 V vs SHE), and low density (0.53 g cm⁻³).
This thesis first proposes a phenomenological model to describe the microstructure of aqueous electrolyte and the relation between their phase diagrams with ionic conductivity; highlighting a common correlation between the eutectic composition and peak ionic conductivity in conductivity isotherms. we then propose an empirical model correlating ionic conductivity with both molar concentration and temperature. The aim of this portion of the thesis is to provide an in depth understanding of aqueous electrolytes' physical properties in a way that can help researchers optimize the energy density and the cost of ALIBs.
Moving further, the thesis presents two novel composite solid electrolytes (CSE) that were developed and fully characterized. Both of which were composed of the following four components; polyethylene oxide (PEO), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, lithium lanthanum titanate (LLTO) perovskite inorganic ceramic and the polymer plasticizer succinonitrile (SN). The careful formulation of these CSEs was based on the trade-off between film forming ability and ionic conductivity. The optimized polymer rich CSE proved to have better characteristics when compared to its ceramic rich alternative. ASSBs employing both CSEs were successfully charged and discharged when coupled with lithium metal anode and in-lab prepared composite cathode. The developed thin and flexible CSEs could be utilized in small applications (Wh-KWh) such as in consumer electronics and flexible biomedical devices (e.g., pacemakers) or larger applications (kWh-MWh) such as in EVs and large format storage for the electrical grid.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45411
Date11 September 2023
CreatorsAl-Salih, Hilal
ContributorsBaranova, Elena A., Abu-Lebdeh, Yaser
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAttribution-NonCommercial 4.0 International, http://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0024 seconds