Return to search

Ultrasmall SnO(2) nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage

Yes / Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA.h.g(-1) at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. / National Natural Science Foundation of China (21103039), Anhui Province Natural Funds for Distinguished Young Scientists, https://bradscholars.brad.ac.uk/browse?order=ASC&rpp=20&sort_by=-1&etal=-1&offset=6150&type=authorResearch Fund for the Doctoral Program of Higher Education of China (20110111120008), Beijing National Laboratory for Molecular Sciences (BNLMS), and Deutsche Forschungsgemeinschaft Grant (DFG): H1113/3-5. C.Y. acknowledges the support from the “Thousand Talents Program” and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/10440
Date25 March 2014
CreatorsDing, L., He, S., Miao, S., Jorgensen, M.R., Leubner, S., Yan, C., Hickey, Stephen G., Eychmüller, A., Xu, J., Schmidt, O.G.
Source SetsBradford Scholars
Detected LanguageEnglish
TypeArticle, Published version
Rights(c) 2014 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/)

Page generated in 0.0193 seconds