The increasing demand for Li-ion batteries requires moving away from cobalt-containing cathode materials because Co is scarce, expensive, and geographically strongly localized. Co-free Ni-rich cathodes and their derivatives are, in principle, an excellent alternative, as Ni is more abundant, less expensive, and environmentally friendlier than Co. LiNiO₂, the parent of Ni-rich cathode materials, is structurally identical and chemically similar to LiCoO₂, offering almost the same theoretical capacity. However, LiNiO₂ and related materials often degrade rapidly during electrochemical cycling, with degradation modes including Li/Ni mixing, stacking faults, and surface reconstructions, making them unsuitable for battery applications. In this thesis, we used first-principles calculations to investigate the origin of Li/Ni mixing and stacking-fault formation, and we explored if entropy stabilization can be exploited to stabilize cobalt-free cathode materials.
At half Li concentration, layered Li₀.₅NiO₂ is metastable, and the ground state is the spinel phase. The phase transformation from the layered to the spinel structure involves Ni migration and leads to Li/Ni mixing but only occurs at high temperatures. To better understand Li/Ni mixing in LiNiO₂, we determined the layered-to-spinel transformation in Li₀.₅NiO₂. We found the mechanism determined by electronic-structure symmetries, leading to a different route and intermediates from other well-studied lithium transition-metal oxides, such as Li₀.₅MnO₂.
One important complication in LiNiO₂ is that it forms stoichiometry defects in which Ni atoms replace Li atoms, yielding off-stoichiometric Li₁₋zNi₁₊zO₂. Li/Ni mixing, a process in which Li and Ni interchange sites, can occur during synthesis or electrochemical cycling, and it reduces the capacity by impeding the intercalation of Li ions during battery operation. We unraveled the Li/Ni-mixing mechanism and explained the impact of off-stoichiometry on Li/Ni mixing from an electronic and geometric perspective. We also determined the role of the Li concentration and the Ni oxidation state on the driving force for Li/Ni cation mixing.
At low Li contents, stacking faults can form in LiNiO₂, a process in which Ni layers glide relative to each other. These planar glides can alter the particle morphology, create new surfaces, and accelerate degradation. Stacking faults form unfavorable sites for Li, which impedes intercalation and lowers the capacity. We investigated the role of off-stoichiometry in planar glides and Ni migration in the presence of stacking faults. We determined how the distribution of Ni across the Li layers affects planar glides and explained how Li/Ni mixing may prevent the formation of stacking faults.
Finally, to provide alternatives to the Ni-rich family of Co-free cathodes, we investigated if entropic stabilization can be exploited to stabilize layered cathode materials and prevent their degradation. We computationally assessed equimolar layered high-entropy oxides, a new class of layered materials that exhibits substitutional disorder in the transition-metal layer. We found that the general strategy of entropic stabilization is viable and identified four candidate compositions with good predicted energy density as a starting point for further studies.
The research conducted as part of this thesis advances the understanding of degradation in Co-free cathode materials and identifies a direction for developing stable Co-free layered cathode materials with high energy density.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/bkbt-ha71 |
Date | January 2024 |
Creators | Komurcuoglu, Cem |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0019 seconds