Return to search

Skin peptide defences of African clawed frogs (Xenopus laevis) and New Zealand Litoria frogs against bacterial dermatosepticemia

In frogs, part of the important immune defence system of their skin is the secretion of antimicrobial peptides from granular glands. This study investigated the immune function of skin peptides in protection against bacterial pathogens associated with infectious bacterial dermatosepticemia under a number of environmental conditions and at certain stages of the life cycle of frogs. The natural peptide mixture of skin peptides was collected from skin secretions of three semi-aquatic Litoria frog species L. aurea, L. raniformis and L. ewingii and aquatic Xenopus laevis and assayed for activity against the bacterial pathogens: Aeromonas hydrophila, Chryseobacterium meningosepticum, Citrobacter freundii, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Serratia liquefaciens. The peptide mixtures of three frog species Xenopus laevis, Litoria aurea and Litoria raniformis showed activity against C. freundii, C. meningosepticum, K. pneumoniae and P. aeruginosa in vitro indicating a likely protective function. One Litoria species, L. ewingii, had a peptide mixture that did not have activity against any pathogen. Subsequently, in experimental exposure of animals to the pathogen K. pneumoniae, this species was found to be susceptible to disease while the other sympatric species L. raniformis was found to be resistant. A strong correlation was shown between composition of skin peptides and resistance to disease. A comparison of the production and activity of skin peptides from four frog species showed the aquatic X. laevis to have more effective immune defence against bacterial pathogens than three tested Litoria species. X. laevis produced significantly greater amount of bioactive peptide mixture than three tested Litoria species. Three pathogens A. hydrophila, P. mirabilis and S. liquefaciens are abundant components of the skin microbiota of healthy frogs and were found to be resistant to the peptide mixtures of all four frog species tested. It was shown that one pathogen, A. hydrophila, had the ability to secrete proteases which could inactivate skin peptides. Thus while skin peptides could function against several pathogens, some pathogens might have co-evolved to resist skin peptides. A comparison of the peptide mixtures from skin secretions of adults, metamorphs and larvae of L. ewingii using liquid chromatography-mass spectrometry analyses showed that peptide mixtures of post metamorphic animals, adults and metamorphs, had a species-specific profile that included the antimicrobial peptide uperin 7.1, while the larval peptide mixture did not contain uperin 7.1 or any other known species-specific peptide. This finding indicates the absence of a secretory mechanism that could compensate for the absence of granular glands in larvae. Analyses of the production and activity of skin peptides of L. raniformis after exposure to two different environmental stressors, low environmental temperature and pesticide carbaryl, showed that the total amount of bioactive peptide was significantly reduced which could consequently increase susceptibility to disease. Thus suppression of skin peptides could be a possible mechanism for synergism between the important stressors and pathogens in disease development.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/4437
Date January 2008
CreatorsSchadich, Ermin
PublisherUniversity of Canterbury. School of Biological Sciences
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Ermin Schadich, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0127 seconds