Return to search

Design of components for mmWave phased array in deep submicron CMOS technology

With the advancement in wireless communication, there has been a lot of overlap in the frequency spectrum used by different applications in the lower frequency band. Also there is an ever-increasing demand for high-speed wireless data transfer. Due to the aforementioned reasons, a lot of work is being done recently in the unlicensed 60GHz bandwidth due to the high data rates it can support. But it is tough to achieve long-range point-to-point transmission at this frequency due to the limited output power and high path losses. A phased array system is a viable solution at these mmWave frequencies to achieve highly directive long-range point-to-point communication. The objective of this research is the design and implementation of phase shifters, VCO and LNA for mmWave phased array system.



In this work, active and passive quadrature generation schemes integrated with a vector modulator have been proposed that can be used to produce arbitrary phase shift with a deterministic resolution at the LO signal. Also, alternate IF and PLL based phase shifting schemes for a mmWave phased array system have been proposed. A complete design procedure from parasitic modeling of devices to verification of the design using EM simulations has been discussed in this work. The simulation results are compared with actual measurement results from the fabricated chip and the performance of the various circuits has been analyzed. Furthermore, the designs of VCO and low noise amplifier to be used in the mmWave phased array system are discussed here.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/37182
Date09 November 2009
CreatorsVadivelu, Praveen Babu
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds