The main objective of this study was to evaluate the organic N in silty clay loam soil as an indicator of soil fertility. The incubation method was used in this study. The N03 -N, the total N percent, and the organic matter were determined. The soil which was used in this study came from Evans Research Farm. The samples were taken from two different N experiments which were adjacent to each other. The soil samples were taken in October-November, 1973, after the crop had been harvested. These two experiments had different cropping histories.
The results of the first experiment which had continuous corn for four years indicated that there was no correlation between the mineralizable-N and the crop performance, but there was a good correlation between the No3 -N and crop yield. The results of the second experiment which had alfalfa for three years prior to corn indicated that there was a good correlation between N03-N and the crop performance and also there was a correlation between mineralizable-N and crop performance.
It was concluded that cropping history could be used as a guideline as to whether mineralizable-N should be tested as an indication of soil N availability. In situations where the cropping history is unknown, N03-N could be used exclusively since it was a good fertility predictor in both of these field experiments.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-4612 |
Date | 01 May 1975 |
Creators | Romaih, Saleh M. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0019 seconds