Return to search

Corner Detection Approach to the Building Footprint Extraction from Lidar Data

The essential procedure of constructing 3-D building models in urban areas is to extract the building boundary footprint. In the past researches, the common procedures used in extracting the building footprint are applying edge detection, vectorization, and generalization. However, the derived boundary lines occasionally occur zigzag patterns, thus, it still needs further building footprint regularization. This study proposed a new approach in the point of view that the points, lines and polygons are the essential elements in reconstructing 3-D building models. The proposed new method is based on ¡§corner detection approach (CDA)¡¨ and ¡§Adjustment of building footprints and corner points (ABFCO)¡¨ algorithm on Light Detection And Ranging (LiDAR) or binary classification resultant imagery. This study implements Harris and Local Binary Pattern (LBP) corner detection, afterward, connects all detected points by using convex hull algorithm. However, ortho-non-rectangle buildings would compose poor outlines after convex hull. This study combines open and dilation morphology with the find ignored point algorithm to improve any incorrect connections. Finally, performs the ABFCO algorithm to those points which belong to the same boundary to generalize a line segment, and to figure out the intersections and boundary lines of the buildings.
The experiment results have proved that the overall accuracy of LBP corner detection is about 3.5% higher than Harris corner detection, its overall accuracy is about 92% in rectangular buildings and about 91% in non-rectangular buildings, its standard deviation of boundary length is 0.29m and better than Harris¡¦s 0.55m. We also compared LBP corner detection with edge detection. The overall accuracy of corner detection is about 3% higher than edge detection, standard deviation of boundary length 0.37m is also better than edge detection 0.75m. This study not only proved the corner detection is better than edge detection from data, but also developed ABFCO algorithm is helpful for extracting more accurate building footprint lines.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0129108-193131
Date29 January 2008
CreatorsYun, Guan-Chyun
ContributorsShiahn-Wern Shyue, Lian-Hwe Lee, Ming-Jer Huang, Tian-Yuan Shih
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0129108-193131
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0185 seconds